Přeskočit na obsah

Nadrovina

Z Wikipedie, otevřené encyklopedie
(rozdíl) ← Starší revize | zobrazit aktuální verzi (rozdíl) | Novější revize → (rozdíl)

Nadrovinou se v geometrii rozumí pro daný prostor (nejčastěji eukleidovský, ale také afinní, vektorový nebo projektivní) dimenze n jakýkoliv jeho podprostor dimenze n−1.

V rovině je tedy nadrovinou každá přímka a v třírozměrném prostoru je nadrovinou každá rovina. V eukleidovském prostoru platí, že nadrovina prostor dělí na dva poloprostory.

Obecná rovnice nadroviny

[editovat | editovat zdroj]

Platí, že nadrovinu nrozměrného prostoru lze popsat jedinou lineární rovnicí o n neznámých ve tvaru

.

V případě přímky v rovině se jedná o takzvanou obecnou rovnici přímky:

která se obvykle zapisuje se souřadnicemi značenými a koeficienty značenými , konkrétně

V případě roviny v třírozměrném prostoru se jedná o takzvanou obecnou rovnici roviny

která se obvykle zapisuje se souřadnicemi značenými a koeficienty značenými , konkrétně