Intuicionistická logika

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání

Intuicionistická logika je druh logiky, který nepoužívá princip vyloučeného třetího. Pravdivostní hodnoty 0 a 1 v ní znamenají „není možno zkonstruovat“ a „je možno zkonstruovat“. Na rozdíl od běžné (například Aristotelské) logiky neplatí princip negace negace. Například implikace:

Něco nemůže neexistovatmusí to existovat

v intuicionistické logice obecně neplatí.

Taková implikace je použita například při důkazu věty z matematické analýzy, podle níž z každé omezené posloupnosti lze vybrat konvergentní podposloupnost. Nemožnost takového výběru lze snadno dovést do sporu. Z hlediska intuicionistické logiky je ale takový důkaz chybný, protože nedává obecný návod ke konstrukci limity takové posloupnosti v konečném počtu kroků.

Intuicionistická logika úzce souvisí s teorií vyčíslitelnosti. Pravdivost v intuicionistické logice lze ztotožnit s algoritmickou řešitelností.