Seznam integrálů hyperbolických funkcí
Z Wikipedie, otevřené encyklopedie
Skočit na navigaci
Skočit na vyhledávání
Seznamy
integrálů
Tabulka integrálů elementárních funkcí
racionální funkce
iracionální funkce
exponenciální funkce
logaritmické funkce
trigonometrické funkce
inverzní trigonometrické funkce
hyperbolické funkce
inverzní hyperbolické funkce
Toto je seznam
integrálů
(primitivních funkcí)
hyperbolických funkcí
.
∫
sinh
c
x
d
x
=
1
c
cosh
c
x
{\displaystyle \int \sinh cx\,\mathrm {d} x={\frac {1}{c}}\cosh cx}
∫
cosh
c
x
d
x
=
1
c
sinh
c
x
{\displaystyle \int \cosh cx\,\mathrm {d} x={\frac {1}{c}}\sinh cx}
∫
sinh
2
c
x
d
x
=
1
4
c
sinh
2
c
x
−
x
2
{\displaystyle \int \sinh ^{2}cx\,\mathrm {d} x={\frac {1}{4c}}\sinh 2cx-{\frac {x}{2}}}
∫
cosh
2
c
x
d
x
=
1
4
c
sinh
2
c
x
+
x
2
{\displaystyle \int \cosh ^{2}cx\,\mathrm {d} x={\frac {1}{4c}}\sinh 2cx+{\frac {x}{2}}}
∫
sinh
n
c
x
d
x
=
1
c
n
sinh
n
−
1
c
x
cosh
c
x
−
n
−
1
n
∫
sinh
n
−
2
c
x
d
x
(pro
n
>
0
)
{\displaystyle \int \sinh ^{n}cx\,\mathrm {d} x={\frac {1}{cn}}\sinh ^{n-1}cx\cosh cx-{\frac {n-1}{n}}\int \sinh ^{n-2}cx\,\mathrm {d} x\qquad {\mbox{(pro }}n>0{\mbox{)}}}
také:
∫
sinh
n
c
x
d
x
=
1
c
(
n
+
1
)
sinh
n
+
1
c
x
cosh
c
x
−
n
+
2
n
+
1
∫
sinh
n
+
2
c
x
d
x
(pro
n
<
0
,
n
≠
−
1
)
{\displaystyle \int \sinh ^{n}cx\,\mathrm {d} x={\frac {1}{c(n+1)}}\sinh ^{n+1}cx\cosh cx-{\frac {n+2}{n+1}}\int \sinh ^{n+2}cx\,\mathrm {d} x\qquad {\mbox{(pro }}n<0{\mbox{, }}n\neq -1{\mbox{)}}}
∫
cosh
n
c
x
d
x
=
1
c
n
sinh
c
x
cosh
n
−
1
c
x
+
n
−
1
n
∫
cosh
n
−
2
c
x
d
x
(pro
n
>
0
)
{\displaystyle \int \cosh ^{n}cx\,\mathrm {d} x={\frac {1}{cn}}\sinh cx\cosh ^{n-1}cx+{\frac {n-1}{n}}\int \cosh ^{n-2}cx\,\mathrm {d} x\qquad {\mbox{(pro }}n>0{\mbox{)}}}
také:
∫
cosh
n
c
x
d
x
=
−
1
c
(
n
+
1
)
sinh
c
x
cosh
n
+
1
c
x
−
n
+
2
n
+
1
∫
cosh
n
+
2
c
x
d
x
(pro
n
<
0
,
n
≠
−
1
)
{\displaystyle \int \cosh ^{n}cx\,\mathrm {d} x=-{\frac {1}{c(n+1)}}\sinh cx\cosh ^{n+1}cx-{\frac {n+2}{n+1}}\int \cosh ^{n+2}cx\,\mathrm {d} x\qquad {\mbox{(pro }}n<0{\mbox{, }}n\neq -1{\mbox{)}}}
∫
d
x
sinh
c
x
=
1
c
ln
|
tanh
c
x
2
|
{\displaystyle \int {\frac {\mathrm {d} x}{\sinh cx}}={\frac {1}{c}}\ln \left|\tanh {\frac {cx}{2}}\right|}
také:
∫
d
x
sinh
c
x
=
1
c
ln
|
cosh
c
x
−
1
sinh
c
x
|
{\displaystyle \int {\frac {\mathrm {d} x}{\sinh cx}}={\frac {1}{c}}\ln \left|{\frac {\cosh cx-1}{\sinh cx}}\right|}
také:
∫
d
x
sinh
c
x
=
1
c
ln
|
sinh
c
x
cosh
c
x
+
1
|
{\displaystyle \int {\frac {\mathrm {d} x}{\sinh cx}}={\frac {1}{c}}\ln \left|{\frac {\sinh cx}{\cosh cx+1}}\right|}
také:
∫
d
x
sinh
c
x
=
1
c
ln
|
cosh
c
x
−
1
cosh
c
x
+
1
|
{\displaystyle \int {\frac {\mathrm {d} x}{\sinh cx}}={\frac {1}{c}}\ln \left|{\frac {\cosh cx-1}{\cosh cx+1}}\right|}
∫
d
x
cosh
c
x
=
2
c
arctan
e
c
x
{\displaystyle \int {\frac {\mathrm {d} x}{\cosh cx}}={\frac {2}{c}}\arctan e^{cx}}
∫
d
x
sinh
n
c
x
=
cosh
c
x
c
(
n
−
1
)
sinh
n
−
1
c
x
−
n
−
2
n
−
1
∫
d
x
sinh
n
−
2
c
x
(pro
n
≠
1
)
{\displaystyle \int {\frac {\mathrm {d} x}{\sinh ^{n}cx}}={\frac {\cosh cx}{c(n-1)\sinh ^{n-1}cx}}-{\frac {n-2}{n-1}}\int {\frac {\mathrm {d} x}{\sinh ^{n-2}cx}}\qquad {\mbox{(pro }}n\neq 1{\mbox{)}}}
∫
d
x
cosh
n
c
x
=
sinh
c
x
c
(
n
−
1
)
cosh
n
−
1
c
x
+
n
−
2
n
−
1
∫
d
x
cosh
n
−
2
c
x
(pro
n
≠
1
)
{\displaystyle \int {\frac {\mathrm {d} x}{\cosh ^{n}cx}}={\frac {\sinh cx}{c(n-1)\cosh ^{n-1}cx}}+{\frac {n-2}{n-1}}\int {\frac {\mathrm {d} x}{\cosh ^{n-2}cx}}\qquad {\mbox{(pro }}n\neq 1{\mbox{)}}}
∫
cosh
n
c
x
sinh
m
c
x
d
x
=
cosh
n
−
1
c
x
c
(
n
−
m
)
sinh
m
−
1
c
x
+
n
−
1
n
−
m
∫
cosh
n
−
2
c
x
sinh
m
c
x
d
x
(pro
m
≠
n
)
{\displaystyle \int {\frac {\cosh ^{n}cx}{\sinh ^{m}cx}}\mathrm {d} x={\frac {\cosh ^{n-1}cx}{c(n-m)\sinh ^{m-1}cx}}+{\frac {n-1}{n-m}}\int {\frac {\cosh ^{n-2}cx}{\sinh ^{m}cx}}\mathrm {d} x\qquad {\mbox{(pro }}m\neq n{\mbox{)}}}
také:
∫
cosh
n
c
x
sinh
m
c
x
d
x
=
−
cosh
n
+
1
c
x
c
(
m
−
1
)
sinh
m
−
1
c
x
+
n
−
m
+
2
m
−
1
∫
cosh
n
c
x
sinh
m
−
2
c
x
d
x
(pro
m
≠
1
)
{\displaystyle \int {\frac {\cosh ^{n}cx}{\sinh ^{m}cx}}\mathrm {d} x=-{\frac {\cosh ^{n+1}cx}{c(m-1)\sinh ^{m-1}cx}}+{\frac {n-m+2}{m-1}}\int {\frac {\cosh ^{n}cx}{\sinh ^{m-2}cx}}\mathrm {d} x\qquad {\mbox{(pro }}m\neq 1{\mbox{)}}}
také:
∫
cosh
n
c
x
sinh
m
c
x
d
x
=
−
cosh
n
−
1
c
x
c
(
m
−
1
)
sinh
m
−
1
c
x
+
n
−
1
m
−
1
∫
cosh
n
−
2
c
x
sinh
m
−
2
c
x
d
x
(pro
m
≠
1
)
{\displaystyle \int {\frac {\cosh ^{n}cx}{\sinh ^{m}cx}}\mathrm {d} x=-{\frac {\cosh ^{n-1}cx}{c(m-1)\sinh ^{m-1}cx}}+{\frac {n-1}{m-1}}\int {\frac {\cosh ^{n-2}cx}{\sinh ^{m-2}cx}}\mathrm {d} x\qquad {\mbox{(pro }}m\neq 1{\mbox{)}}}
∫
sinh
m
c
x
cosh
n
c
x
d
x
=
sinh
m
−
1
c
x
c
(
m
−
n
)
cosh
n
−
1
c
x
+
m
−
1
m
−
n
∫
sinh
m
−
2
c
x
cosh
n
c
x
d
x
(pro
m
≠
n
)
{\displaystyle \int {\frac {\sinh ^{m}cx}{\cosh ^{n}cx}}\mathrm {d} x={\frac {\sinh ^{m-1}cx}{c(m-n)\cosh ^{n-1}cx}}+{\frac {m-1}{m-n}}\int {\frac {\sinh ^{m-2}cx}{\cosh ^{n}cx}}\mathrm {d} x\qquad {\mbox{(pro }}m\neq n{\mbox{)}}}
také:
∫
sinh
m
c
x
cosh
n
c
x
d
x
=
sinh
m
+
1
c
x
c
(
n
−
1
)
cosh
n
−
1
c
x
+
m
−
n
+
2
n
−
1
∫
sinh
m
c
x
cosh
n
−
2
c
x
d
x
(pro
n
≠
1
)
{\displaystyle \int {\frac {\sinh ^{m}cx}{\cosh ^{n}cx}}\mathrm {d} x={\frac {\sinh ^{m+1}cx}{c(n-1)\cosh ^{n-1}cx}}+{\frac {m-n+2}{n-1}}\int {\frac {\sinh ^{m}cx}{\cosh ^{n-2}cx}}\mathrm {d} x\qquad {\mbox{(pro }}n\neq 1{\mbox{)}}}
také:
∫
sinh
m
c
x
cosh
n
c
x
d
x
=
−
sinh
m
−
1
c
x
c
(
n
−
1
)
cosh
n
−
1
c
x
+
m
−
1
n
−
1
∫
sinh
m
−
2
c
x
cosh
n
−
2
c
x
d
x
(pro
n
≠
1
)
{\displaystyle \int {\frac {\sinh ^{m}cx}{\cosh ^{n}cx}}\mathrm {d} x=-{\frac {\sinh ^{m-1}cx}{c(n-1)\cosh ^{n-1}cx}}+{\frac {m-1}{n-1}}\int {\frac {\sinh ^{m-2}cx}{\cosh ^{n-2}cx}}\mathrm {d} x\qquad {\mbox{(pro }}n\neq 1{\mbox{)}}}
∫
x
sinh
c
x
d
x
=
1
c
x
cosh
c
x
−
1
c
2
sinh
c
x
{\displaystyle \int x\sinh cx\,\mathrm {d} x={\frac {1}{c}}x\cosh cx-{\frac {1}{c^{2}}}\sinh cx}
∫
x
cosh
c
x
d
x
=
1
c
x
sinh
c
x
−
1
c
2
cosh
c
x
{\displaystyle \int x\cosh cx\,\mathrm {d} x={\frac {1}{c}}x\sinh cx-{\frac {1}{c^{2}}}\cosh cx}
∫
tanh
c
x
d
x
=
1
c
ln
|
cosh
c
x
|
{\displaystyle \int \tanh cx\,\mathrm {d} x={\frac {1}{c}}\ln |\cosh cx|}
∫
coth
c
x
d
x
=
1
c
ln
|
sinh
c
x
|
{\displaystyle \int \coth cx\,\mathrm {d} x={\frac {1}{c}}\ln |\sinh cx|}
∫
tanh
n
c
x
d
x
=
−
1
c
(
n
−
1
)
tanh
n
−
1
c
x
+
∫
tanh
n
−
2
c
x
d
x
(pro
n
≠
1
)
{\displaystyle \int \tanh ^{n}cx\,\mathrm {d} x=-{\frac {1}{c(n-1)}}\tanh ^{n-1}cx+\int \tanh ^{n-2}cx\,\mathrm {d} x\qquad {\mbox{(pro }}n\neq 1{\mbox{)}}}
∫
coth
n
c
x
d
x
=
−
1
c
(
n
−
1
)
coth
n
−
1
c
x
+
∫
coth
n
−
2
c
x
d
x
(pro
n
≠
1
)
{\displaystyle \int \coth ^{n}cx\,\mathrm {d} x=-{\frac {1}{c(n-1)}}\coth ^{n-1}cx+\int \coth ^{n-2}cx\,\mathrm {d} x\qquad {\mbox{(pro }}n\neq 1{\mbox{)}}}
∫
sinh
b
x
sinh
c
x
d
x
=
1
b
2
−
c
2
(
b
sinh
c
x
cosh
b
x
−
c
cosh
c
x
sinh
b
x
)
(pro
b
2
≠
c
2
)
{\displaystyle \int \sinh bx\sinh cx\,\mathrm {d} x={\frac {1}{b^{2}-c^{2}}}(b\sinh cx\cosh bx-c\cosh cx\sinh bx)\qquad {\mbox{(pro }}b^{2}\neq c^{2}{\mbox{)}}}
∫
cosh
b
x
cosh
c
x
d
x
=
1
b
2
−
c
2
(
b
sinh
b
x
cosh
c
x
−
c
sinh
c
x
cosh
b
x
)
(pro
b
2
≠
c
2
)
{\displaystyle \int \cosh bx\cosh cx\,\mathrm {d} x={\frac {1}{b^{2}-c^{2}}}(b\sinh bx\cosh cx-c\sinh cx\cosh bx)\qquad {\mbox{(pro }}b^{2}\neq c^{2}{\mbox{)}}}
∫
cosh
b
x
sinh
c
x
d
x
=
1
b
2
−
c
2
(
b
sinh
b
x
sinh
c
x
−
c
cosh
b
x
cosh
c
x
)
(pro
b
2
≠
c
2
)
{\displaystyle \int \cosh bx\sinh cx\,\mathrm {d} x={\frac {1}{b^{2}-c^{2}}}(b\sinh bx\sinh cx-c\cosh bx\cosh cx)\qquad {\mbox{(pro }}b^{2}\neq c^{2}{\mbox{)}}}
∫
sinh
(
a
x
+
b
)
sin
(
c
x
+
d
)
d
x
=
a
a
2
+
c
2
cosh
(
a
x
+
b
)
sin
(
c
x
+
d
)
−
c
a
2
+
c
2
sinh
(
a
x
+
b
)
cos
(
c
x
+
d
)
{\displaystyle \int \sinh(ax+b)\sin(cx+d)\,\mathrm {d} x={\frac {a}{a^{2}+c^{2}}}\cosh(ax+b)\sin(cx+d)-{\frac {c}{a^{2}+c^{2}}}\sinh(ax+b)\cos(cx+d)}
∫
sinh
(
a
x
+
b
)
cos
(
c
x
+
d
)
d
x
=
a
a
2
+
c
2
cosh
(
a
x
+
b
)
cos
(
c
x
+
d
)
+
c
a
2
+
c
2
sinh
(
a
x
+
b
)
sin
(
c
x
+
d
)
{\displaystyle \int \sinh(ax+b)\cos(cx+d)\,\mathrm {d} x={\frac {a}{a^{2}+c^{2}}}\cosh(ax+b)\cos(cx+d)+{\frac {c}{a^{2}+c^{2}}}\sinh(ax+b)\sin(cx+d)}
∫
cosh
(
a
x
+
b
)
sin
(
c
x
+
d
)
d
x
=
a
a
2
+
c
2
sinh
(
a
x
+
b
)
sin
(
c
x
+
d
)
−
c
a
2
+
c
2
cosh
(
a
x
+
b
)
cos
(
c
x
+
d
)
{\displaystyle \int \cosh(ax+b)\sin(cx+d)\,\mathrm {d} x={\frac {a}{a^{2}+c^{2}}}\sinh(ax+b)\sin(cx+d)-{\frac {c}{a^{2}+c^{2}}}\cosh(ax+b)\cos(cx+d)}
∫
cosh
(
a
x
+
b
)
cos
(
c
x
+
d
)
d
x
=
a
a
2
+
c
2
sinh
(
a
x
+
b
)
cos
(
c
x
+
d
)
+
c
a
2
+
c
2
cosh
(
a
x
+
b
)
sin
(
c
x
+
d
)
{\displaystyle \int \cosh(ax+b)\cos(cx+d)\,\mathrm {d} x={\frac {a}{a^{2}+c^{2}}}\sinh(ax+b)\cos(cx+d)+{\frac {c}{a^{2}+c^{2}}}\cosh(ax+b)\sin(cx+d)}
Kategorie
:
Integrální počet
Matematické seznamy
Navigační menu
Osobní nástroje
Nejste přihlášen(a)
Diskuse
Příspěvky
Vytvoření účtu
Přihlášení
Jmenné prostory
Článek
Diskuse
čeština
Zobrazení
Číst
Editovat
Editovat zdroj
Zobrazit historii
Více
Hledání
Navigace
Hlavní strana
Nápověda
Potřebuji pomoc
Nejlepší články
Náhodný článek
Poslední změny
Komunitní portál
Pod lípou
Podpořte Wikipedii
Nástroje
Odkazuje sem
Související změny
Načíst soubor
Speciální stránky
Trvalý odkaz
Informace o stránce
Citovat stránku
Položka Wikidat
Tisk/export
Vytvořit knihu
Stáhnout jako PDF
Verze k tisku
V jiných jazycích
العربية
Bosanski
Català
English
Español
Euskara
فارسی
Français
Galego
Hrvatski
Magyar
Հայերեն
Bahasa Indonesia
Italiano
日本語
ភាសាខ្មែរ
한국어
Македонски
Nederlands
Русский
Srpskohrvatski / српскохрватски
Slovenčina
Slovenščina
Shqip
Српски / srpski
தமிழ்
Türkçe
Українська
Tiếng Việt
中文
Upravit odkazy