Projektivní rovina
Projektivní rovina je matematický prostor, v kterém jsou definovány přímky a body a platí v ní následující axiomy:
- Každé dva různé body leží na právě jedné přímce
- Každé dvě různé přímky se protínají právě v jednom bodě
- Existují alespoň 4 různé body, z nichž žádné tři neleží na přímce
- Existují alespoň 4 různé přímky, z nichž žádné tři se neprotínají v bodě.
Jedná se o jeden ze základních pojmů projektivní geometrie.
Nejznámější projektivní rovina je reálná projektivní rovina, jejíž model je . Body jsou tady definovány jako jednorozměrné podprostory (nebo afinní přímky procházející jedním bodem třírozměrného afinního prostoru) a přímky jako dvojrozměrné podprostory (množina všech afinních přímek ležících v jedné afinní rovině).
Pro každé těleso F je možné zkonstruovat podobnou projektivní rovinu . Např. nejmenší projektivní rovinu (počtem bodů), tzv. Fanova rovina, která obsahuje pouze 7 bodů a 7 přímek, což je projektivní rovina nad dvouprvkovým tělesem .
Známá je také projektivní rovina známá jako Cayleyho rovina, anebo Moufangové rovina. Dá se zkonstruovat pomocí oktonionů a je známá tím, že v ní neplatí Desarguesův axiom. Studium Cayleyho roviny má vnitřní souvislost s výjimečnými Lieovými grupami.
Externí odkazy
[editovat | editovat zdroj]- Obrázky, zvuky či videa k tématu projektivní rovina na Wikimedia Commons