Elektrovodivé příze z uhlíkových nanotrubic
Elektrovodivé příze z uhlíkových nanotrubic (angl.: conductive CNT yarns, něm.: leitfähige CNT Garne) jsou výrobky z uhlíkových nanovláken k použití na speciální elektronické textilie.
V roce 2011 se odhadovala celosvětová kapacita výroby uhlíkových nanotrubic na 460 ročních tun. Téměř celá kapacita se využívá k výrobě prášku, grafenu a disperzí, jen malá část nanotrubic se začala zpracovávat na fólie a příze.[1] [2]
Technologie výroby
[editovat | editovat zdroj]Z laboratorních pokusů v letech 1991-2010 jsou známé tři principy zvlákňování: za mokra, z aerogelu a za sucha. [3]
Výsledky dosavadních experimentů (2015) ukazují, že pro průmyslovou výrobu příze bude nevhodnější technologie zvlákňování za sucha a spřádání zakroucením (nebo zaoblením) proužku vláken z matrice vzniklé metodou CVD. [4]
Spřadatelné nanotrubice s tloušťkou 6-15 nm se získávají metodou CVD. Vlákna se se zachycují v kolmé poloze na tenké plošce ze silikonu, kde se seřazují jako tzv. forestX (viz vrchní část prostředního snímku). Z forestu se odtahuje proužek vláken, ze kterých se tvoří pavučinka obsahující vodorovně uložené, vzájemně zaklíněné nanotrubice. Materiál pavučinky se pak „dopřádá“, tj. zpevňuje zákrutem (nebo zaoblováním), příp. napařováním v prchavém rozpouštědle a navíjí na cívku. [4]
X Délka trubic, tj. výška forestu může dosáhnout až 300 nm (±2nm), hustota cca 1–3 mg/cm2. Z 1 cm forestu se tvoří 5-6 m vlákenné pavučinky.[5] (Pokusně byla v roce 2013 v čínských laboratořích zhotovena uhlíková nanotrubice o délce 550 mm.[6])
Způsoby dopřádání
[editovat | editovat zdroj][4] V roce 2015 bylo v odborné literatuře uváděno např.:
- Zakrucování na křídlovém stroji s použitím elektromagnetu se zakládá na stejném principu jako konvenční křídlovka.
- Up-spinning. Pavučinka je tažena nahoru („up“) k vřetenu, které ji zakrucuje rychlostí do 18 000 otáček za minutu a příze (mnohem jemnější než výrobek z křídlového stroje) se navíjí na pomaleji rotující cívku.
- Zhušťování zaoblováním. Pavučinka prochází párem válečků s pružným potahem, které se otáčejí a odvalují axiálními pohyby. Zaoblená vlákna se navinují na cívku. Příze mají mnohem vyšší modul pružnosti než zakrucované výrobky.
- Jádrové příze se vyrábějí z kovového jádra, které se opřádá na křídlovém stroji pláštěm z uhlíkových nanotrubic.
Struktura a vlastnosti příze
[editovat | editovat zdroj][7] Příze se komerčně vyrábějí s průměrem 20–30 mikronů. Porezita zakroucené příze dosahuje asi 24 %, příze obsahuje v průřezu obvykle více než milion jednotlivých vláken.
Pevnost příze nepřesahuje 5 % pevnosti v ní obsažených vláken. Vliv zákrutu na pevnost příze je podobný jako u konvenčních přízí. Maximální pevnost se dosahuje se sklonem závitů cca 20 %, pro specifický modul je optimální sklon 10 %
Např. pevnost příze z jednostěnných trubic o jemnosti 3 tex vyráběné rychlostí 150 m/hod dosahuje 1,8 GPa (0,8 N/tex). [8]
Elektrická vodivost příze z vícestěnných trubic se udává v rozmezí 1,5 × 104 a 4,1 × 104 S/m. Vodivost se dá podstatně zvýšit pokovováním příze, ovšem zároveň se ztrátou 30–50 % pevnosti.
Použití CNT přízí
[editovat | editovat zdroj]Elektrický odpor příze se dá měnit zavedením určitého napětí. Příze se pak dá použít k simultánnímu měření napětí a teploty. Citlivost textilních senzorů na napětí se pohybuje v rozmezí 1,4–1,8 mV/V/1000 µ.
- Pružné superkondenzátory
jsou požadovány jako zdroj energie zejména pro přenosné elektronické přístroje. Příze z uhlíkových nanotrubic se v nich používají jako aktivní materiál nebo jako substrát.
Elektrody z CNT příze v elektrochemické buňce způsobují roztažení a smrštění. Např. umělý sval z CNT aktuátoru se může napínat až stokrát výš než přirozený sval.
- Výrobou příze z uhlíkových trubic se zabývá např. firma General Nano, Meijo-nano Carbon, Q-flo, Plasan aj. Rozsáhlejšímu použití přízí brání především vysoká cena. (Vícestěnné nanotrubice stály např. v roce 2013 kolem 100 USD / kg).[1]
Reference
[editovat | editovat zdroj]- ↑ a b DE VOLDER, Michael F. L.; TAWFICK, Sameh H.; BAUGHMAN, Ray H.; HART, A. John. Carbon Nanotubes: Present and Future Commercial Applications. S. 535–539. Science [online]. 2013-02-01. Roč. 339, čís. 6119, s. 535–539. Dostupné online. DOI 10.1126/science.1222453. (anglicky)
- ↑ Druhy materiálů z uhlíkových nanotrubic (US Research Nanomaterials 2015): http://www.us-nano.com/nanotech_tips
- ↑ a b Schulz/Shanov/Yin: Nanotube Superfiber Materials: Changing Engineering Design, William Andrew 2013, ISBN 9781455778645
- ↑ a b c Dias: Electronic Textiles, Woodhead Publishing 2015, ISBN 978-0-08-100223-0
- ↑ BYKOVA, Julia S.; LIMA, Márcio Dias; HAINES, Carter S.; TOLLY, Derrick; SALAMON, M. B.; BAUGHMAN, Ray H.; ZAKHIDOV, Anvar A. Flexible, Ultralight, Porous Superconducting Yarns Containing Shell-Core Magnesium Diboride-Carbon Nanotube Nanofibers. S. 7510–7515. Advanced Materials [online]. NaN-NaN. Roč. 26, čís. 44, s. 7510–7515. Dostupné online. DOI 10.1002/adma.201402794. PMID 25319360. (anglicky)
- ↑ ZHANG, Rufan; ZHANG, Yingying; ZHANG, Qiang; XIE, Huanhuan; QIAN, Weizhong; WEI, Fei. Growth of Half-Meter Long Carbon Nanotubes Based on Schulz–Flory Distribution. S. 6156–6161. ACS Nano [online]. 2013-07-23. Roč. 7, čís. 7, s. 6156–6161. Dostupné online. DOI 10.1021/nn401995z. PMID 23806050. (anglicky)
- ↑ Komerční výroba příze z uhlíkových nanotrubic: http://www.compositesworld.com/articles/near-commercialization-cnt-yarn-tape-and-sheet
- ↑ Informace firmy Nanocommp Technologies (2008): http://www.nsti.org/publications/Nanotech/2008/pdf/319.pdf