Polární zesílení: Porovnání verzí

Z Wikipedie, otevřené encyklopedie
Smazaný obsah Přidaný obsah
Založení stránky
značky: možné problémové formulace editace z Vizuálního editoru
(Žádný rozdíl)

Verze z 27. 11. 2021, 08:21

Vývoj teploty na zemi dle NASA GISS, ukazující polární amplifikaci.

Polární amplifikace (polární zesílení) je jev, kdy jakákoli změna v čisté radiační bilanci (například zesílení skleníkového efektu) má tendenci vyvolat větší změnu teploty v blízkosti pólů v porovnání s celoplanetárním průměrem.[1] Běžně se kvantifikuje jako poměr polárního a tropického oteplování. Na planetě s atmosférou, která dokáže omezit vyzařování dlouhovlnného záření do vesmíru (skleníkový efekt), budou povrchové teploty vyšší, než by předpokládal jednoduchý výpočet planetární teplotní rovnováhy. Tam, kde jsou atmosféra nebo rozsáhlé oceány schopny přenášet teplo směrem k pólům, budou póly teplejší a rovníkové oblasti chladnější, než by předpovídala jejich místní čistá radiační bilance.[2] Pokud je globální průměrná teplota nižší, póly se ochladí nejvíce ve srovnání s referenčním klimatem; naopak póly se nejvíce oteplí, když je globální průměrná teplota vyšší.[1]

V extrémním případě se předpokládá, že na planetě Venuši došlo za dobu její existence k velmi výraznému nárůstu skleníkového efektu,[3] a to natolik, že se její póly oteplily natolik, že je její povrchová teplota fakticky izotermická (bez rozdílu mezi póly a rovníkem).[4][5] Na Zemi vodní pára a stopové plyny zajišťují menší skleníkový efekt a atmosféra a rozsáhlé oceány zajišťují účinný přenos tepla směrem k pólům. Jak změny paleoklimatu, tak nedávné změny globálního oteplování vykazují silné polární zesílení.

Výrazem Arktické zesílení se označuje polární zesílení u severního pólu Země; antarktické zesílení označuje zesílení u jižního pólu.

Historie

Studii založenou na pozorování týkající se zesílení arktických teplot publikoval v roce 1969 Michail Budyko;[6] závěr své studie shrnul takto: „Úbytek mořského ledu ovlivňuje teploty Arktidy prostřednictvím zpětné vazby na povrchové albedo.“[7][8] V témže roce publikoval podobný model William D. Sellers.[9] Obě studie vzbudily značnou pozornost, protože naznačily možnost vzniku pozitivní zpětné vazby v globálním klimatickém systému.[10] V roce 1975 Manabe a Wetherald publikovali první do jisté míry věrohodný model všeobecné cirkulace, který se zabýval účinky nárůstu skleníkových plynů. Ačkoli se omezoval na méně než třetinu zeměkoule, s „bažinatým“ oceánem a pouze pevninským povrchem ve vysokých zeměpisných šířkách, ukázal rychlejší oteplování Arktidy než tropů (stejně jako všechny následující modely).[11]

Odkazy

Reference

V tomto článku byl použit překlad textu z článku Polar amplification na anglické Wikipedii.

  1. a b LEE, Sukyoung. A theory for polar amplification from a general circulation perspective. Asia-Pacific Journal of Atmospheric Sciences. 2014-01, roč. 50, čís. 1, s. 31–43. Dostupné online [cit. 2021-11-27]. ISSN 1976-7633. DOI 10.1007/s13143-014-0024-7. (anglicky) 
  2. PIERREHUMBERT, Raymond T. Principles of planetary climate. Cambridge: Cambridge University Press, 2010. 652 s. Dostupné online. ISBN 978-0-521-86556-2, ISBN 0-521-86556-5. OCLC 601113992 
  3. KASTING, James F. Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus. 1988-06, roč. 74, čís. 3, s. 472–494. Dostupné online [cit. 2021-11-27]. DOI 10.1016/0019-1035(88)90116-9. (anglicky) 
  4. Venus Fact Sheet. nssdc.gsfc.nasa.gov [online]. [cit. 2021-11-27]. Dostupné online. 
  5. LORENZ, Ralph D.; LUNINE, Jonathan I.; WITHERS, Paul G. Titan, Mars and Earth : Entropy production by latitudinal heat transport. Geophysical Research Letters. 2001, roč. 28, čís. 3, s. 415–418. Dostupné online [cit. 2021-11-27]. ISSN 1944-8007. DOI 10.1029/2000GL012336. (anglicky) 
  6. BUDYKO, M. I. The effect of solar radiation variations on the climate of the Earth. Tellus. 1969-01, roč. 21, čís. 5, s. 611–619. Dostupné online [cit. 2021-11-27]. ISSN 0040-2826. DOI 10.3402/tellusa.v21i5.10109. (anglicky) 
  7. CVIJANOVIC, Ivana; CALDEIRA, Ken. Atmospheric impacts of sea ice decline in CO2 induced global warming. Climate Dynamics. 2015-03, roč. 44, čís. 5-6, s. 1173–1186. Dostupné online [cit. 2021-11-27]. ISSN 0930-7575. DOI 10.1007/s00382-015-2489-1. (anglicky) 
  8. Ice in Action: Sea ice at the North Pole has something to say about climate change – Yale Scientific Magazine. www.yalescientific.org [online]. [cit. 2021-11-27]. Dostupné online. 
  9. SELLERS, William D. A Global Climatic Model Based on the Energy Balance of the Earth-Atmosphere System. Journal of Applied Meteorology and Climatology. 1969-06-01, roč. 8, čís. 3, s. 392–400. Dostupné online [cit. 2021-11-27]. ISSN 1520-0450. DOI 10.1175/1520-0450(1969)008<0392:AGCMBO>2.0.CO;2. (EN) 
  10. OLDFIELD, Jonathan D. Mikhail Budyko's (1920–2001) contributions to Global Climate Science: from heat balances to climate change and global ecology. WIREs Climate Change. 2016-09, roč. 7, čís. 5, s. 682–692. Dostupné online [cit. 2021-11-27]. ISSN 1757-7780. DOI 10.1002/wcc.412. (anglicky) 
  11. MANABE, Syukuro; WETHERALD, Richard T. The Effects of Doubling the CO2 Concentration on the climate of a General Circulation Model. Journal of the Atmospheric Sciences. 1975-01-01, roč. 32, čís. 1, s. 3–15. Dostupné online [cit. 2021-11-27]. ISSN 0022-4928. DOI 10.1175/1520-0469(1975)032<0003:TEODTC>2.0.CO;2. (EN)