Součinitel ztráty třením

Z Wikipedie, otevřené encyklopedie

Součinitel ztráty třením [-] je jedním ze základních členů Darcy-Weisbachovy rovnice. Standardně se používá v rámci výpočtů tlakových potrubí, v případě otevřených koryt slouží hlavně k teoretickým úvahám. Pro jeho určení existuje několik vzorců různých autorů, v praxi se též často používá speciální nomogram (Moodyho graf).

Určení součinitele ztráty třením[editovat | editovat zdroj]

Součinitel ztráty třením vychází z pokusů Nikuradseho, který pracoval s potrubím uvnitř pokrytým homogenní pískovou drsností (podrobněji viz např.[1][2]). Jeho původní graf již v podstatě měl strukturu současně používaného Moodyho grafu. Během doby se však prokázalo, že pro technické potrubí s drsností nehomogenní závislost odvozená Nikuradsem neplatí. Časem vzniklo zpracováním řady měření na potrubích z různých materiálů (a tedy i o různé absolutní drsnosti) o různých průměrech několik vzorců pro různé oblasti hydraulických odporů. Celkové výsledky jsou shrnuty v Moodyho grafu. Dílčí výsledky zpracovali různí výzkumníci do vzorců pro jednotlivé oblasti odporů.

Moodyho graf[editovat | editovat zdroj]

Moodyho graf (Moodyho diagram, byl pojmenován po svém autorovi Lewisi Ferrym Moodymu) graficky zobrazuje obecně přijímanou závislost součinitele ztráty třením na Reynoldsově čísle a relativní drsnosti potrubí.

Moodyho diagram

V grafu Friction Factor znamená součinitel ztráty třením , Reynolds Number je Reynoldsovo číslo (zde v poněkud nezvyklé formě s použitím dynamické viskozity [Pa.s] místo viskozity kinematické [m2s−1]), Relative Pipe Roughness je relativní drsnost [-] kde [m] je absolutní drsnost potrubí (viz tabulka orientačních hodnot uvnitř grafu) a [m] vnitřní průměr potrubí.

V levé části nomogramu je uvedena závislost součinitele ztráty třením pro laminární proudění (), kde platí nepřímá úměra .

Dále navazuje kritická oblast přechodu mezi laminárním a turbulentním prouděním ( - Transition Region - v grafu je označena užší než se běžně udává) kde sice závisí také jen na Re, ale závislost se nedá popsat rovnicí, protože přechod mezi laminárním a turbulentním prouděním zpravidla probíhá skokem.

Dolní obálka svazku křivek (označená Smooth Pipe) platí pro hydraulicky hladké potrubí; zde je relativní drsnost natolik malá, že součinitel ztráty třením na ní nezávisí a je funkcí pouze Reynoldsova čísla, .

Na svazku křivek vyjadřujícím závislost jsou patrné dvě oblasti, jejichž hranice je vyznačena čárkovanou čarou s popisem Complete turbulence. Tato hranice je podle Colebrooka popsána rovnicí

.

Vlevo od této hranice je tzv. přechodná oblast odporů, kde beze zbytku platí rovnice . Vpravo od této hranice je tzv. kvadratická oblast odporů, kde již součinitel ztráty třením nezávisí na a je pouze funkcí relativní drsnosti,, a v této části jsou tedy křivky rovnoběžné s osou x.

Vybrané vzorce[editovat | editovat zdroj]

Laminární proudění[editovat | editovat zdroj]

Pro oblast laminárního proudění se standardně uvádí Poiseuilleův vztah

,

který může zasahovat i do přechodné oblasti mezi laminárním a turbulentním prouděním (viz výše).

Hydraulicky hladké potrubí[editovat | editovat zdroj]

Pro hydraulicky hladké potrubí platí níže uvedené vzorce pro technická potrubí i pro potrubí s homogenní drsností, protože součinitel ztráty třením na drsnosti nezávisí a je funkcí pouze . V rozmezí lze použít jednoduchý, v praxi dosti oblíbený Blasiův vztah,

Teoreticky správnější a údajně přesnější je Prandtlův vzorec

,

podle Nikuradseho experimentů přesný do , údajně extrapolovatelný i pro vyšší hodnoty (až do 108). Jeho nevýhodou je nutnost výpočtu postupným přibližováním. Tuto nevýhodu nemají další vzorce, např. Colebrookovo zjednodušení Nikuradseho vzorce (nezávisle odvozené také Konakovem)

,

platný pro , nebo vzorec Altšulův

platný v rozsahu

Přechodná oblast odporů[editovat | editovat zdroj]

V přechodné oblasti odporů je nejznámější vzorec Colebrooka a Whitea

který platí pro a je uznáván jako nejpřesnější a s nejširší platností. Pokud je druhý člen v závorce dostatečně malý (je malá relativní drsnost), lze jej vůči prvnímu členu zanedbat a vztah vlastně přecházi do vzorce pro hydraulicky hladké potrubí. Pokud naopak je při velkém a malý první člen, přechází vztah do vzorce pro kvadratickou oblast. Pokud mají oba členy zhruba stejnou váhu, platí výsledek v přechodné oblasti odporů. Poněkud nepříjemné je, že vzorec je implicitní a tudíž je nutné výpočet provést nejjednodušeji postupným přibližováním.

Nevýhodu implicitnosti nemá vzorec Altšula o stejné oblasti platnosti

.

Dosti používaný je i Moodyho vztah

platící pro a současně .

Kvadratická oblast[editovat | editovat zdroj]

V kvadratické oblasti je použitelný vzorec Nikuradseho

či jednoduchý vztah Šifrinsona

platný pro a současně .

Určení součinitele ztráty třením z Chézyho rovnice[editovat | editovat zdroj]

Porovnáním vyjádření ztrát, resp. sklonu čáry energie, z Darcy-Weisbachovy rovnice a rovnice Chézyho lze snadno odvodit vztah

čili .

kde je Chézyho rychlostní součinitel. Tyto vztahy můžeme použít pro vzájemný přepočet, avšak musíme vést v patrnosti, že Chézyho rovnice byla odvozena a platí pouze pro kvadratickou oblast odporů.

Reference[editovat | editovat zdroj]

  1. Boor, B., Kunštátský, J. a Patočka, C. (1968): Hydraulika pro vodohospodářské stavby. SNTL/ALFA Praha/Bratislava
  2. Kolář, V., Patočka, C. a Bém, J. (1983): Hydraulika. SNTL/Alfa Praha/Bratislava