Cauchyova–Goursatova věta: Porovnání verzí

Z Wikipedie, otevřené encyklopedie
Smazaný obsah Přidaný obsah
m pravopis
rozšíření
Řádek 1: Řádek 1:
'''Cauchyova–Goursatova věta''' (také '''Cauchyova věta''' nebo '''Cauchyova věta o integrálech''') je věta z oblasti [[Komplexní analýza|komplexní analýzy]]. Říká, že integrály [[Holomorfní funkce|holomorfních funkcí]] po uzavřených [[Křivka|křivkách]] jsou za určitých podmínek vždy nulové. Je pojmenována po svých autorech: v jednodušší podobě (jen pro pravoúhlé oblasti) větu vyslovil roku 1814 [[Augustin Louis Cauchy]] a později ji zobecnil [[Edouard Goursat]].
'''Cauchyova–Goursatova věta''' (také '''Cauchyova věta''' nebo '''Cauchyova věta o integrálech''') je věta z oblasti [[Komplexní analýza|komplexní analýzy]]. Říká, že integrály [[Holomorfní funkce|holomorfních funkcí]] po uzavřených [[Křivka|křivkách]] jsou za určitých podmínek vždy nulové. Je pojmenována po svých autorech: v jednodušší podobě (jen pro pravoúhlé oblasti) větu vyslovil roku 1814 [[Augustin Louis Cauchy]] a později ji zobecnil [[Edouard Goursat]]. Jedním z důsledků věty je [[Cauchyův vzorec]], umožňující počítat hodnoty holomorfních funkcí uvnitř nějaké oblasti z hodnot na její hranici.


Věta zní takto: Nechť '''G''' je [[Jednoduše souvislá množina|jednoduše souvislá]] a [[otevřená množina]] komplexních čísel a ''f'' je holomorfní funkce definovaná v '''G'''. Nechť ''C'' je Jordanova křivka (tj. jednoduchá uzavřená rektifikovatelná křivka) v '''G''', která je po částech hladká. Pak integrál ''f'' po křivce ''C'' se rovná nule. Zapsáno rovnicí:
Věta zní takto: Nechť '''G''' je [[Jednoduše souvislá množina|jednoduše souvislá]] a [[otevřená množina]] komplexních čísel a ''f'' je holomorfní funkce definovaná v '''G'''. Nechť ''C'' je Jordanova křivka (tj. jednoduchá uzavřená rektifikovatelná křivka) v '''G''', která je po částech hladká. Pak integrál ''f'' po křivce ''C'' se rovná nule. Zapsáno rovnicí:

Verze z 3. 1. 2020, 14:33

Cauchyova–Goursatova věta (také Cauchyova věta nebo Cauchyova věta o integrálech) je věta z oblasti komplexní analýzy. Říká, že integrály holomorfních funkcí po uzavřených křivkách jsou za určitých podmínek vždy nulové. Je pojmenována po svých autorech: v jednodušší podobě (jen pro pravoúhlé oblasti) větu vyslovil roku 1814 Augustin Louis Cauchy a později ji zobecnil Edouard Goursat. Jedním z důsledků věty je Cauchyův vzorec, umožňující počítat hodnoty holomorfních funkcí uvnitř nějaké oblasti z hodnot na její hranici.

Věta zní takto: Nechť G je jednoduše souvislá a otevřená množina komplexních čísel a f je holomorfní funkce definovaná v G. Nechť C je Jordanova křivka (tj. jednoduchá uzavřená rektifikovatelná křivka) v G, která je po částech hladká. Pak integrál f po křivce C se rovná nule. Zapsáno rovnicí:

Nejjednodušší důkaz se zakládá na tom, že se integrál rozepíše na reálnou a imaginární část, pomocí Greenovy věty převede na integrál přes vnitřek křivky C a na základě Cauchyho–Riemannových podmínek se ukáže, že integrand se rovná konstantně nule. Jestliže tedy a , pak

Oba integrály lze upravit pomocí Greenovy věty:

přičemž integrandy jsou podle Cauchyho–Riemannových podmínek nulové, čímž je tvrzení dokázáno.

Opačné tvrzení, tedy že z nulovosti integrálů po uzavřených křivkách vyplývá holomorfnost funkce, se nazývá Morerova věta.

Větu lze dále zobecnit pro případ, že uvnitř křivky C se nacházejí oblasti, na kterých funkce f není holomorfní nebo není definovaná, ale tyto oblasti jsme schopni omezit po částech hladkými Jordanovými křivkami. Obecná Cauchyova–Goursatova věta zní:

Nechť C a C1, ..., Cn jsou po částech hladké a souhlasně orientované Jordanovy křivky, nechť C1, ..., Cn leží uvnitř C a vnitřky křivek C1, ..., Cn jsou navzájem disjunktní. Nechť f je holomorfní na křivce C a na jejím vnitřku s případnou výjimkou vnitřků křivek C1, ..., Cn. Pak platí