Bílkovina: Porovnání verzí

Z Wikipedie, otevřené encyklopedie
Smazaný obsah Přidaný obsah
m Editace uživatele 92.62.238.83 (diskuse) vráceny do předchozího stavu, jehož autorem je Vojtěch Dostál
značka: rychlé vrácení zpět
chyba
Řádek 1: Řádek 1:
[[Soubor:3D protein.jpg|náhled|upright=1.4|'''[[3D]] struktura proteinu''' je dána jeho terciární strukturou. Výsledné prostorové uspořádání proteinu je závislé na pořadí jednotlivých [[Aminokyselina|aminokyselin]] v řetězci. Různé aminokyseliny mají různé biochemické vlastnosti a tak jejich kombinace a kombinace jejich vlastností udává jak prostorové záhyby aminokyselinového řetězce, z nichž je „stvořena“ konečná podoba proteinu, tak i konečné vlastnosti proteinů]]
[[Soubor:3D protein.jpg|náhled|upright=1.4|'''[[3D]] struktura proteinu''' je dána jeho terciární strukturou. Výsledné prostorové uspořádání proteinu je závislé na pořadí jednotlivých [[Aminokyselina|aminokyselin]] v řetězci. Různé aminokyseliny mají různé biochemické vlastnosti a tak jejich kombinace a kombinace jejich vlastností udává jak prostorové záhyby aminokyselinového řetězce, z nichž je „stvořena“ konečná podoba proteinu, tak i konečné vlastnosti proteinů]]
'''Bílkoviny''', odborně '''proteiny''', patří mezi [[Biologická makromolekula|biopolymery]]. Jedná se o vysokomolekulární přírodní látky s [[relativní molekulová hmotnost|relativní molekulovou hmotností]] 10<sup>3</sup> až 10<sup>6</sup> složené z [[Aminokyselina|aminokyselin]].
'''Bílkovin''' odborně '''proteiny''', patří mezi [[Biologická makromolekula|biopolymery]]. Jedná se o vysokomolekulární přírodní látky s [[relativní molekulová hmotnost|relativní molekulovou hmotností]] 10<sup>3</sup> až 10<sup>6</sup> složené z [[Aminokyselina|aminokyselin]].


Proteiny jsou podstatou všech živých [[organismus|organismů]]. Jejich základní povahu rozpoznal [[Henri Braconnot]] již v roce [[1819]] při zahřívání [[klih]]u s [[kyselina sírová|kyselinou sírovou]]. Podrobněji strukturu bílkovin popsali [[Hermann Emil Fischer]] a [[Linus Pauling]].
Proteiny jsou podstatou všech živých [[organismus|organismů]]. Jejich základní povahu rozpoznal [[Henri Braconnot]] již v roce [[1819]] při zahřívání [[klih]]u s [[kyselina sírová|kyselinou sírovou]]. Podrobněji strukturu bílkovin popsali [[Hermann Emil Fischer]] a [[Linus Pauling]].

Verze z 24. 5. 2019, 08:14

3D struktura proteinu je dána jeho terciární strukturou. Výsledné prostorové uspořádání proteinu je závislé na pořadí jednotlivých aminokyselin v řetězci. Různé aminokyseliny mají různé biochemické vlastnosti a tak jejich kombinace a kombinace jejich vlastností udává jak prostorové záhyby aminokyselinového řetězce, z nichž je „stvořena“ konečná podoba proteinu, tak i konečné vlastnosti proteinů

Bílkovin odborně proteiny, patří mezi biopolymery. Jedná se o vysokomolekulární přírodní látky s relativní molekulovou hmotností 103 až 106 složené z aminokyselin.

Proteiny jsou podstatou všech živých organismů. Jejich základní povahu rozpoznal Henri Braconnot již v roce 1819 při zahřívání klihu s kyselinou sírovou. Podrobněji strukturu bílkovin popsali Hermann Emil Fischer a Linus Pauling.

Základní vlastnosti bílkovin

V proteinech jsou aminokyseliny vzájemně vázány aminoskupinami –NH2 a karboxylovými skupinami –COOH amidovou vazbou –NH–CO– (amidy), která se v případě proteinů nazývá peptidová vazba.

Podle počtu aminokyselin, které jsou v molekule takto navázány, rozlišujeme

  • oligopeptidy (obsahují 2–10 aminokyselin)
  • polypeptidy (obsahují 11–100 aminokyselin, podle některých 11–50 aminokyselin )
  • vlastní bílkoviny – proteiny (více než 100 aminokyselin, podle některých více než 50 aminokyselin).

Nejednotnost hranice mezi peptidy a bílkovinami je dána tím, že dříve platilo: do počtu 50 aminokyselin se jedná o peptid, při vyšším počtu pak o bílkovinu. V současnosti je posuzována poměrná molekulová hmotnost (Mr), kdy do hodnoty Mr=10 000 jde o peptid, nad tuto hodnotu bílkovinu. To odpovídá zhruba 100 aminokyselinám.

Pořadí aminokyselin v řetězci proteinu označujeme jako primární strukturu nebo také sekvenci. Z 20 obvyklých proteinogenních aminokyselin, které se vždy vyskytují v lidském organismu, může v případě jednoduchého proteinu, složeného ze 100 aminokyselin, vzniknout 20100 (tj. zhruba 10130) rozdílných primárních proteinových struktur. Z toho vyplývá, že může existovat nesrovnatelně větší množství různých proteinů, než je jich obsaženo ve všech živých organismech na Zemi. Struktura mnoha proteinů je již známá, např. myoglobinu a hemoglobinu; u blízce příbuzných živočišných druhů jsou si struktury velmi podobné.

Molekuly proteinů mohou vytvářet protáhlé, vláknité, ve vodě nerozpustné struktury, skleroproteiny (též fibrilární), a kulovité nebo elipsoidní, ve vodě rozpustné sferoproteiny (též globulární). V protikladu ke skleroproteinům (kolagen, keratin, fibroin, tvořící vlasy, rohovinu, chrupavky…) lze skoro u všech sferoproteinů (např. enzymy, svalová tkáň) varem nebo působením kyselin a louhů (změnou hodnoty pH) rozrušit jejich terciární a sekundární strukturu (srážení, denaturace). Přitom se ztrácejí některé biologické vlastnosti proteinů, např. schopnost enzymů štěpit potravu nebo svalovou kontraktivitu. Tělu cizí proteiny vyvolávají svou přítomností reakci antigen–protilátka, a proto nesmí být nikdy přímo vpraveny do krevního oběhu.

Struktura bílkovin

čtyři konformační úrovně struktury bílkovinné molekuly. Od nejjednodušší k nejvyšší

Rozlišujeme primární, sekundární, terciární a u některých složitějších proteinů ještě kvartérní strukturu bílkovinových řetězců.

Primární struktura

Primární struktura je dána pořadím aminokyselin v polypeptidovém řetězci. Standardně se zapisuje od N-konce k C-konci proteinu. První určení primární struktury provedl v roce 1953 Frederick Sanger. Primární struktura udává chemické vlastnosti bílkoviny a také determinuje vyšší struktury, viz článek skládání bílkovin.

Sekundární struktura

Sekundární struktura je geometrické uspořádání polypeptidového řetězce „na krátké vzdálenosti“, tzn. mezi několika po sobě jdoucími aminokyselinami. První studie sekundárních struktur proběhly v 30. a 40. letech 20. století. Jsou rozpoznávány různé druhy těchto stavebních motivů: alfa šroubovice (alfa-helix), struktura skládaného listu (beta-sheet), neuspořádaná struktura (random coil) a další.

Někdy se definuje i "strukturní motiv" nebo supersekundární struktura jako přechod mezi sekundární a terciární strukturou, což je jednoduché uspořádání několika sekundárních struktur, jako je řecký klíč složený z několika beta listů, beta-vlásenka (beta-hairpin) ze dvou beta listů a otočky nebo helix-smyčka-helix tvořící základ jedné z významných rodin transkripčních faktorů (nazývaných v angličtině basic helix-loop-helix).

Terciární struktura

Tímto pojmem se označuje trojrozměrné uspořádání celého peptidového řetězce. Je tvořena střídáním sekundárních struktur. Podle tvaru a vlastností rozlišujeme strukturu globulární (albumin), která má tvar klubka a je rozpustná ve vodě, a fibrilární (myosin) vláknitou strukturu ve vodě nerozpustnou. Celá struktura je stabilizována kovalentními vazbami (např.: vazba S-S tzv. disulfidový můstek) v postranních řetězcích aminokyselin.

Kvartérní struktura

Řeší uspořádání podjednotek v proteinových aglomerátech, tvořících jednu funkční bílkovinu. Podjednotky jsou samostatné polypeptidické struktury, které jsou navzájem spojeny nekovalentními interakcemi. Kvartérní struktura též řeší prostorové uspořádání těchto podjednotek. Takovéto uspořádání vykazují jen složitější komplexy bílkovin, např. fibrily kolagenu, nebo lidské DNA polymerázy.

Rozdělení na podjednotky přináší mnohé evoluční výhody oproti existenci jednoho ohromného řetězce. Při výskytu poruchy ve stavbě stačí nahradit poškozenou podjednotku, což je podobné stavbě budov za použití prefabrikátů. Místo výstavby podjednotky může být navíc odlišné od místa jejího výskytu. Bílkoviny se skládají z podjednotek buď odlišných (heteromultimery) nebo shodných (homomultimery). Oblasti styku jednotlivých podjednotek jsou tvořeny slabými vazbami (nekovalentními interakcemi), především vodíkovými můstky nebo hydrofóbním efektem.

Symetrie

Bílkoviny většinou vykazují v oblasti spoje prvky symetrie. Nejjednodušší symetrií je cyklická symetrie. Označuje se Cn, kde n je počet protomerů uspořádaných v kruhu, který je středem symetrie. Jednotlivé protomery spolu svírají úhel 360°/n. Nejobvyklejší je C2 symetrie, kde jsou dvě podjednotky přímo proti sobě. Vyšší cyklické symetrie jsou poměrně vzácné.

Komplex bílkovin 1pzn EB I z databáze PDB. S výraznou cyklickou opakující se strukturou.

Složitější symetrie se nazývá diedrální a značí se Dn. Takové dimery jsou v podstatě tvořeny dvěma cyklicky symetrickými polovinami, jedna z nich leží pod a druhá nad rovinou symetrie. Střed symetrie se pak nachází v polovině spojnice středů symetrie obou cyklicky symetrických polovin. Polypeptidy s takovýmto uspořádáním jsou poměrně snadno disociovatelné na dva cyklicky symetrické oligomery. K další disociaci na protomery v přírodních podmínkách obvykle nedochází, protože k jejímu dosažení by už bylo zapotřebí značně drastických podmínek.

Funkce bílkovin

Bílkoviny jsou základem všech známých organismů, a proto v něm plní různé funkce.

Proteinogenní aminokyseliny

Strukturní vzorec alaninu, jedné z aminokyselin
Podrobnější informace naleznete v článku Aminokyselina#Aminokyseliny, které se vyskytují v proteinech.

V proteinech se vyskytuje 20 kódovaných proteinogenních aminokyselin. K tomu jsou organismy schopné zainkorporovat do proteinů speciálními mechanismy další tři aminokyseliny. Jako tzv. 21. proteinogenní aminokyselina se označuje selenocystein (Sec). Tato aminokyselina nahrazuje cystein v lidském enzymu glutathionperoxidáze a v enzymech některých bakterií.[1] Jako 22. proteinogenní aminokyselina se označuje pyrolysin. U bakteriích, ale i plastidů a mitochondrií se vyskytuje N-formylmethionin, který ke důležitý pro iniciaci translace a je první aminokyselinou zařazenou při tvorbě proteinu. U člověka se vyskytuje 21 proteinogenních aminokyselin (standardních 20 + selenocystein).

Ty aminokyseliny, které si organismus neumí sám syntetizovat a musí je přijímat, se označují jako esenciální aminokyseliny.

Kasein je hlavní bílkovina obsažená v mléku

Důkaz bílkovin

Pro důkaz bílkovin se používají následující reakce:

Metabolismus bílkovin

Metabolismus bílkovin je souhrn různých biochemických procesů, při nichž jsou syntetizovány a rozkládány bílkoviny.

Podrobnější informace naleznete v článku Bílkoviny ve výživě člověka.

Syntéza bílkovin

Související informace naleznete také v článku translace (biologie).

Základní stavební částicí bílkovin jsou aminokyseliny, a tak je zřejmé, že se bez nich tzv. proteosyntéza neobejde. Některé aminokyseliny je schopné tělo vyrábět samo, jiné musí přijímat v potravě (k těmto tzv. esenciálním aminokyselinám patří u člověka v dospělosti 12 aminokyselin, v dětství 14[2]). Bílkoviny jsou ve většině případů kódovány v specifických úsecích v DNA organismů. Tyto úseky (tzv. geny) jsou přepisovány v procesu transkripce do mRNA a na ribozomu následně dochází k výrobě proteinů (translaci) za účasti této mRNA a jednotlivých aminokyselin napojených na specifické tRNA.

Vzácně některé relativně krátké polypeptidy nevznikají podle mRNA na ribozomu, ale v cytoplazmě syntézou pomocí složitých komplexů enzymů (NonRibosomal Peptide Synthetase), proto se nazývají neribozomální peptidy. Patří k nim některá polypeptidová antibiotika. Jejich produkce zůstane zachována i tehdy, zablokujeme-li ribozomální mašinérii. K těmto polypeptidům patří chloramfenikol a graminicin S. Mechanismus syntézy těchto antibiotik je trochu podobný syntéze mastných kyselin.[3]

Rozklad proteinů

Rozklad proteinů se také nazývá proteolýza. Bílkoviny se tráví na aminokyseliny, v krvi je určitá stálá hladina aminokyselin. Zdrojem aminokyselin jsou jednak bílkoviny z potravy, jednak opotřebované bílkoviny z tkání; malé množství aminokyselin vzniká při přeměně sacharidů. Aminokyseliny jsou potřebné: k syntéze stavebních bílkovin těla, k syntéze enzymů a hormonů, k syntéze plazmatických bílkovin, k přeměně na sacharidy. Část aminokyselin se odbourává na jednodušší látky a při tom se získává energie. Bílkoviny se neukládají do zásob.[zdroj?] Při katabolickém odbourání aminokyselin dochází nejdříve k jejich deaminaci. Aminové skupiny se odštěpují ve formě toxického amoniaku, který je v jaterních buňkách v tzv. ornitinovém cyklu přeměněn na močovinu, jež je krví zanesena do ledvin a vyloučena močí z těla. Uhlíkaté zbytky aminokyselin se začleňují do Krebsova cyklu, kde jsou dekarboxylovány a dehydrogenovány.

Pozn.: 1 molekula močoviny = 3 ATP = ornitinový cyklus.

Mezi enzymy štěpící bílkoviny patří např. pepsin (v žaludku), směs enzymů zvaná erepsin (v tenkém střevě) nebo také trypsin a chymotrypsin (produkované slinivkou břišní).[zdroj?] Mezi hormony řídící štěpení bílkovin patří glukokortikoidy, somatotropin, testosteron a insulin.[zdroj?]

Reference

  1. KODÍČEK, M. selenocystein. From Biochemické pojmy : výkladový slovník [online]. Praha: VŠCHT Praha, 2007 [cit. 2008-10-21]. Dostupné online
  2. VODRÁŽKA, Zdeněk. Biochemie. Praha: Academia, 2007. ISBN 978-80-200-0600-4. 
  3. VOET, Donald; VOET, Judith. Biochemie. 1.. vyd. Praha: Victoria Publishing, 1995. ISBN 80-85605-44-9. 

Literatura

  • Reisenauer R. et al.: CO JE CO? (1) Příručka pro každý den. Pressfoto - vydavatelství ČTK, Praha, 1982

Související články

Externí odkazy