Komplexní číslo: Porovnání verzí

Z Wikipedie, otevřené encyklopedie
Smazaný obsah Přidaný obsah
Řádek 6: Řádek 6:
Komplexní čísla jsou významná nejen v matematice, ale také ve fyzice, zejména v elektrotechnice, v optice, v hydrodynamice i jinde, kde je většina čísel komplexního charakteru.
Komplexní čísla jsou významná nejen v matematice, ale také ve fyzice, zejména v elektrotechnice, v optice, v hydrodynamice i jinde, kde je většina čísel komplexního charakteru.


{{Kotva|Imaginární číslo}}
== Zápis a související pojmy ==
== Zápis a související pojmy ==
'''Komplexním číslem''' nazveme číslo tvaru <math> a + b\mathrm{i} \,\! </math>, kde <math> a \,\! </math> a <math> b \,\! </math> jsou [[Reálné číslo|reálná čísla]]. Tento tvar komplexního čísla se nazývá '''algebraický'''. Písmeno <math> \mathrm{i} \,\! </math> značí '''imaginární jednotku''', která se formálně zavádí jako číslo splňující rovnici <math>\mathrm{i}^2+1=0\,,</math> tj. jako [[odmocnina]] z −1, která v reálných číslech neexistuje.
'''Komplexním číslem''' nazveme číslo tvaru <math> a + b\mathrm{i} \,\! </math>, kde <math> a \,\! </math> a <math> b \,\! </math> jsou [[Reálné číslo|reálná čísla]]. Tento tvar komplexního čísla se nazývá '''algebraický'''. Písmeno <math> \mathrm{i} \,\! </math> značí '''imaginární jednotku''', která se formálně zavádí jako číslo splňující rovnici <math>\mathrm{i}^2+1=0\,,</math> tj. jako [[odmocnina]] z −1, která v reálných číslech neexistuje.

Verze z 30. 1. 2018, 19:04

Znázornění komplexního čísla a čísla k němu komplexně sdruženého v komplexní rovině. r je absolutní hodnota (norma).

Komplexní čísla (z latinského complexus, složený) vznikají rozšířením oboru reálných čísel tak, aby v něm každá algebraická rovnice měla příslušný počet řešení podle základní věty algebry. Například kvadratická rovnice x2 + 1 = 0 nemá v oboru reálných čísel řešení, protože její diskriminant (−4) je záporný a jeho odmocnina zde není definována. Komplexní číslo má dvě složky, reálnou a imaginární, a zapisuje se nejčastěji jako a + bi, přičemž i znamená imaginární jednotku, definovanou vztahem i2 = −1. Zmíněná rovnice pak má dvě řešení, ± i. Pro operace s komplexními čísly platí pravidla pro počítání s dvojčleny.

Komplexní čísla lze interpretovat geometricky. Zde je příklad v kartézských pravoúhlých souřadnicích. Jako se reálná čísla zobrazují na reálné ose Re, budou imaginární čísla zobrazena na kolmé imaginární ose Im a každé komplexní číslo se zobrazí jako bod v rovině se souřadnicemi [x, y]. Číslo tvaru [x, 0] je reálné, číslo tvaru [0, y] je ryze imaginární. Absolutní hodnota komplexního čísla je pak vzdálenost bodu [x, y] od počátku souřadnic a číslo komplexně sdružené (tj. číslo [x, −y]) je zrcadlovým obrazem bodu [x, y] podle reálné osy x, tedy Re.

Komplexní čísla jsou významná nejen v matematice, ale také ve fyzice, zejména v elektrotechnice, v optice, v hydrodynamice i jinde, kde je většina čísel komplexního charakteru.

Zápis a související pojmy

Komplexním číslem nazveme číslo tvaru , kde a jsou reálná čísla. Tento tvar komplexního čísla se nazývá algebraický. Písmeno značí imaginární jednotku, která se formálně zavádí jako číslo splňující rovnici tj. jako odmocnina z −1, která v reálných číslech neexistuje.

Reálné číslo se nazývá reálnou částí tohoto komplexního čísla a číslo jeho imaginární částí. Pokud je , je dotyčné číslo reálným číslem , tj. reálná čísla tvoří podmnožinu čísel komplexních. Pokud je , mluvíme o (ryze) imaginárním číslu. Někteří autoři totiž pojmem imaginární číslo rozumí jakékoli komplexní číslo.

Elektrotechnici používají komplexní čísla k výpočtu rotujících vektorů proudu obvodem, proto neoznačují imaginární jednotku malým písmenem i, ale písmenem j. Na pořadí zápisu imaginární části zpravidla nezáleží , jen v tabulkových procesorech se znak "i" nebo "j" dává vždy za číslo, aby nedocházelo k záměnám s adresami buněk ve sloupci I nebo J, nebo záměnou "i" za elektrický proud.

Značení

Množina všech komplexních čísel se značí obvykle písmenem .

Potřebujeme-li pracovat pouze s reálnou, resp. imaginární částí komplexního čísla , používáme zápis

,
,

kde jsou reálná čísla. Komplexní číslo lze tedy také vyjádřit některým z následujících zápisů .

S imaginární jednotkou se zachází jako s každým jiným číslem, proto je možné používat následujících zkrácených zápisů:

Příklad

Číslo má reálnou část a imaginární část . Nejedná se ani o reálné, ani o ryze imaginární číslo.

Důvody pro zavedení komplexních čísel

Už perský matematik Al-Chorezmí (asi 820) si všiml, že některé kvadratické rovnice nemají řešení. Italský matematik Girolamo Cardano (1501–1576) ukázal, že by stačilo vhodně definovat odmocninu záporného čísla, a René Descartes zavedl 1637 označení reálné a imaginární číslo. Zajímavé výsledky zkoumání těchto „neskutečných“ čísel ukázal Leonhard Euler a komplexní čísla přesně zavedl francouzský matematik Augustin Louis Cauchy (1821) a nezávisle na něm Carl Friedrich Gauss (1831).

Obor reálných čísel, který vyjadřuje dostatečně dobře jakoukoliv kvantitu (množství), se tedy rozšiřuje do oboru komplexních čísel, jejichž význam není intuitivně příliš zřejmý, především proto, že v reálném oboru neleží řešení (kořeny) některých algebraických rovnic, čili obor reálných čísel není vzhledem k nim uzavřený.

V oboru reálných čísel existují polynomy (s reálnými koeficienty a kladnými nezápornými celočíselnými exponenty), které nemají v oboru reálných čísel žádný kořen, případně je počet jejich reálných kořenů nižší, než stupeň polynomu.

Obor komplexních čísel je uzavřený nejen na výše uvedené kořeny polynomů s reálnými koeficienty, ale i na kořeny polynomů s komplexními koeficienty. Tuto uzavřenost zaručuje Základní věta algebry, která tvrdí, že polynom n-tého stupně má v oboru komplexních čísel n kořenů.

Příklad

Polynom nemá v oboru reálných čísel žádný kořen. V oboru komplexních čísel jsou jeho kořeny čísla a , protože:

Operace s komplexními čísly

Algebraický tvar komplexních čísel

Pro čísla v algebraickém tvaru lze jednoduchými algebraickými úpravami odvodit vztahy pro součet, rozdíl a součin dvou komplexních čísel:

Podíl dvou komplexních čísel lze vyjádřit takto:

Pro komplexní číslo je definována konjugace (komplexně sdružené číslo) . Jejich součin je vždy reálný a nezáporný a je roven nule pouze když . Pak můžeme psát pro inverzi stručně pro .

Norma komplexního čísla je definována jako . Platí, že pro libovolná komplexní čísla je , t.j. norma součinu je součin norem.

Geometrické znázornění komplexních čísel

Komplexní čísla se zobrazují v komplexní (Gaussově) rovině jako body se souřadnicemi x,y; x je reálná část komplexního čísla, y imaginární část. Na ose x leží reálná čísla, ose y ryze imaginární čísla. Kombinací těchto dvou složek (reálné a imaginární) dostaneme množinu všech komplexních čísel, tj. Gaussova rovina.

Goniometrický tvar komplexních čísel

Každé komplexní číslo z různé od nuly je možné jednoznačně vyjádřit v goniometrickém tvaru. Pokud si v komplexní rovině zvolíme polární souřadnicový systém, vzdálenost od počátku označíme |z| (absolutní hodnota, také nazývaná norma nebo modul) a orientovaný úhel (argument), kde J[1;0], O je počátkem soustavy a Z je obraz komplexního čísla a + bi se souřadnicemi Z[a;b], platí:

.

Modul lze z algebraického tvaru určit ze vztahu:

. Při zobrazení v komplexní rovině je to délka úsečky .

Argument lze vyjádřit ze vztahů:

Aby byla hodnota argumentu jednoznačná, je nutné ji omezit na nějaký polootevřený interval délky 2π, většinou se volí nebo . Funkce má tedy v odpovídajících bodech skok velikosti 2π. Z tohoto důvodu se například argument součinu dvou komplexních čísel může lišit od součtu jejich argumentů o násobek 2π.

Pro násobení, dělení a umocňování komplexních čísel a platí následující rovnice:

(viz Moivreovu větu)

Pro převod komplexních čísel z goniometrického tvaru na algebraický stačí zjistit hodnotu a a roznásobit závorku jako při práci s klasickým mnohočlenem:

Komplexní funkce

Komplexní funkce reálné proměnné je funkce, jejímž definičním oborem jsou reálná čísla a oborem hodnot jsou komplexní čísla. Platí: h(x) = f(x) + ig(x) kde f je reálná část a g imaginární část komplexní funkce h. Obrazem takovéto funkce v Gaussově rovině je množina všech bodů X = [f(x),g(x)], kde x je z definičního oboru funkce.

Širším pojmem je funkce komplexní proměnné, jejímž definičním oborem jsou komplexní čísla. Studiem těchto funkcí se zabývá komplexní analýza. V tomto oboru se podařilo odhalit mnohé souvislosti mezi rozdílnými funkcemi reálné proměnné. Příkladem je Eulerův vzorec, často využívaný při práci s komplexními čísly, ze kterého vyplývá i vztah mezi základními matematickými konstantami

,

oblíbený nejen mezi matematiky.

Komplexní analýza nabídla nové nástroje i reálné analýze, např. pro výpočet integrálů (Cauchyho vzorec, reziduová věta) a našla široké uplatnění ve fyzice a technických aplikacích, např. při výpočtech fyzikálních polí a matematickém modelování proudění tekutin v hydrodynamice a aerodynamice.

Základní vlastnosti tělesa komplexních čísel

Komplexní čísla s operacemi sčítání a násobení tvoří komutativní těleso. Je to největší komutativní algebraické nadtěleso reálných čísel a algebraický uzávěr tělesa reálných čísel. Toto těleso nelze okruhově uspořádat, protože .

Komplexní čísla je možno chápat jako dvoudimenzionální normovanou podílovou algebru nad . Existují právě dva automorfizmy jakožto algebry nad : identita a konjugace.

Je zajímavé, že existuje nekonečně mnoho automorfizmů jako tělesa (ovšem jsou velmi nespojité a nezachovávají , což znamená, že reálná a čistě imaginární čísla nejsou určena samotnou strukturou tělesa – porovnej s kvaterniony).

Definice pomocí uspořádaných dvojic

Často jsou také komplexní čísla zaváděna jako všechny uspořádané dvojice reálných čísel s definovanými operacemi sčítání a násobení:

Znaménko u násobení obvykle vynecháváme. Množinu všech komplexních čísel obvykle značíme .

Číslo pak nazveme imaginární jednotkou (zapisujeme ). Pro číslo platí .

Použitím axiomů reálných čísel dostaneme následující tvrzení:

1.
2.
3.
4.
5.
6.
7.
8.
9.

Literatura

  • Prof. RNDr. Miloš Ráb, DrSc.: Komplexní čísla v elementární matematice, Masarykova univerzita, Brno, 1997, ISBN 80-210-1475-X
  • Abramowitz and Stegun, Handbook of Mathematical functions with formulas, graphs, and mathematical tables. United States Department of Commerce, National Bureau of Standards, tenth printing 1972. Pages 0–1046.

Související články

Externí odkazy