Přirozené číslo: Porovnání verzí

Z Wikipedie, otevřené encyklopedie
Smazaný obsah Přidaný obsah
HypoBOT (diskuse | příspěvky)
m Přidání šablony Commonscat dle ŽOPP z 28. 7. 2016; kosmetické úpravy
Bez shrnutí editace
Řádek 64: Řádek 64:
{{Přirozená čísla 200-299}}
{{Přirozená čísla 200-299}}
{{Přirozená čísla 300-399}}
{{Přirozená čísla 300-399}}
{{Přirozená čísla 400-499}}
{{Přirozená čísla 400-498}}
{{Přirozená čísla 500-599}}
{{Přirozená čísla 500-599}}
{{Přirozená čísla 600-699}}
{{Přirozená čísla 600-699}}

Verze z 25. 12. 2016, 14:08

Přirozeným číslem (číslem z oboru přirozených čísel) se v matematice obvykle rozumí nezáporné celé číslo (0, 1, 2, 3, …), které lze použít k vyjádření mohutnosti (konečné) množiny (viz kardinální číslo), resp. počtu nějakých předmětů. Zejména ve starší literatuře se nula mezi přirozená čísla nepočítala, což vychází z použití přirozených čísel pro vyjadřování pořadí (viz ordinální číslo). Přirozená čísla patří mezi základní matematické koncepty, a protože se považují za nejjednodušší na pochopení, začíná výuka matematiky obvykle od přirozených čísel.

Značení

Množina přirozených čísel se označuje velkým písmenem N (nebo zdvojeným písmenem ).

Protože někteří autoři touto značkou označují kladná celá čísla a jiní nezáporná celé čísla, používají se také značení, která tuto nejednoznačnost vylučují:

  • pro nezáporná celá čísla (včetně nuly):
    • N0, resp. , případně N0, resp. , nebo
    • Z+0, resp. ;
  • pro kladná celá čísla, (bez nuly):
    • N+, resp. , nebo
    • Z+, resp. .

Formální definice

Exaktní matematické definice množiny přirozených čísel jsou založeny na následujících axiomech (tzv. Peanova aritmetika):

  • Existuje číslo 0.
  • Každé přirozené číslo a má následníka, označeného jako S(a).
  • Neexistuje přirozené číslo, jehož následníkem by byla 0.
  • Různá přirozená čísla mají různé následníky: pokud ab, pak S(a)S(b).
  • Pokud nějakou vlastnost splňuje jak číslo 0, tak i každé číslo, které je následníkem nějakého čísla, které tuto vlastnost splňuje, pak tuto vlastnost splňují všechna přirozená čísla. (Tento axiom zajišťuje platnost důkazů technikou matematické indukce.)

(Poznámka: Číslo 0 v těchto postulátech nemusí odpovídat běžnému výkladu přirozeného čísla nula. 0 v této formální definici znamená pouze nějaký objekt, který spolu s funkcí následnosti splňuje Peanovy axiomy.)

Konstrukce

Nejběžnější konstrukcí přirozených čísel v axiomatické teorii množin je následující postup:

  • Definujeme 0 = {}.
  • Definujeme S(a) = a {a} pro všechna a.
  • Množinu přirozených čísel pak definujeme jako průnik všech množin obsahujících 0 a uzavřených vůči funkci následnosti.

Pomocí axiomu nekonečna lze dokázat, že tato definice splňuje Peanovy axiomy.

V této definici je každé přirozené číslo množinou čísel menších než ono, tedy:

0 = {}
1 = {0} = {{}}
2 = {0, 1} = {0, {0}} = {{}, {{}}}
3 = {0, 1, 2} = {0, {0}, {0, {0}}} = {{}, {{}}, {{}, {{}}}}
…atd.

Tato definice souhlasí s intuitivním pojetím, že každé přirozené číslo n vyjadřuje mohutnost množiny o právě n prvcích.

Vlastnosti

  • Množina přirozených čísel je nekonečná (existuje nekonečně mnoho přirozených čísel), avšak spočetná (podle definice).
  • Na přirozených číslech můžeme definovat operaci sčítání takto: a + 0 = a, a + S(b) = S(a + b) pro všechna a, b. Tím se stane (N, +) komutativním monoidem s neutrálním prvkem 0. Pokud definujeme S(0) = 1, je S(a) = S(a + 0) = a + S(0) = a + 1, tzn. následníkem čísla a je číslo a + 1. Tento monoid je možné vnořit do grupy; nejmenší grupou obsahující přirozená čísla jsou celá čísla.
  • Obdobně můžeme s využitím operace sčítání definovat operaci násobení takto: a * 0 = 0, a * (b + 1) = (a * b) + a. Tím se stane (N, *) komutativním monoidem s neutrálním prvkem 1. Sčítání a násobení splňují distributivní zákon: a * (b + c) = (a * b) + (a * c). (N, +, *) je tedy komutativním polookruhem.
  • Na přirozených číslech lze definovat úplné uspořádání, kdy ab právě tehdy, když existuje přirozené číslo c tak, že a + c = b. Přirozená čísla jsou dobře uspořádaná, tzn. každá neprázdná množina přirozených čísel má nejmenší prvek.
  • Na přirozených číslech neexistuje operace dělení, neboť podíl dvou přirozených čísel obecně nemusí být přirozené číslo. Alternativou je tady dělení se zbytkem: pro libovolná dvě přirozená čísla a, b, kde b ≠ 0, můžeme najít taková přirozená čísla r a q, že platí a = bq + r a zároveň r < b. Číslu r pak říkáme zbytek po dělení čísla a číslem b, číslo q je celočíselný podíl a a b. Tato operace je základem mnoha vlastností (dělitelnost), postupů (Euklidův algoritmus) a idejí v teorii čísel. Na existenci a vlastnostech zbytků po dělení v přirozených číslech je založena jedna část kryptografie.

Externí odkazy