Comptonův jev: Porovnání verzí

Z Wikipedie, otevřené encyklopedie
Smazaný obsah Přidaný obsah
reference
Řádek 63: Řádek 63:


Comptonův jev prokázal, že foton má nejen [[energie|energii]], ale také [[hybnost]], tzn. prokázal [[dualita částice a vlnění|částicovou]] povahu elektromagnetického záření.
Comptonův jev prokázal, že foton má nejen [[energie|energii]], ale také [[hybnost]], tzn. prokázal [[dualita částice a vlnění|částicovou]] povahu elektromagnetického záření.

== Inverzní Comptonův jev ==
Inverzní Comptonův rozptyl je obrácený jev. Lze jej popsat jako [[Thomsonův rozptyl]] v klidové soustavě.<ref>http://boojum.as.arizona.edu/~jill/A300b/Lectures/Inverse%20Compton%20Radiation.ppt - Inverse Compton radiation</ref>

== Reference ==
<references />


== Související články ==
== Související články ==

Verze z 7. 9. 2016, 09:50

Comptonův jev (někdy také Comptonův rozptyl) je fyzikální děj, při kterém se při interakci elektromagnetického záření s atomy pevné látky mění vlnová délka záření v důsledku předání části své energie atomům nebo jejich elektronům. Experimentální důkaz tohoto jevu sloužil jako jeden ze základních argumentů pro vlnově-korpuskulární charakter světla a elektromagnetického záření celkově.

Historie

Jako první publikoval pozorování tohoto jevu Arthur Holly Compton v roce 1923 a roku 1927 za jeho teoretické zdůvodnění a další výzkum v tomto oboru získal i Nobelovu cenu za fyziku.

Compton při svých pokusech nechal dopadat rentgenové záření o energii 17,8 keV na uhlíkovou destičku a měřil energii odražených fotonů v závislosti na úhlu odrazu. Změřená spektra vykazovala přitom podobný tvar jako původní záření, ale byla energeticky posunuta k větším vlnovým délkám - měla tedy nižší energii než původní budící rentgenové záření.

Zdůvodnění jevu a matematický popis

Schematické znázornění Comptonova jevu.

Záření s vysokou energií (řádově několik keV) při průchodu prostředím tvořeným lehkými atomy (tj. s nižšími protonovými čísly) podléhá typu absorpce, zvanému Comptonův jev (Comptonův rozptyl, kvantový rozptyl).

Při tomto typu absorpce narazí foton záření gama nebo rentgenového záření na elektron, který uvolní z jeho dráhy. Foton přitom ztratí pouze určitou část své energie, změní směr pohybu a pokračuje dál jako rozptýlené záření o větší vlnové délce. Čím víc energie získal elektron od fotonu, tím méně je odchýlen od původního směru pohybu fotonu. Foton v tomto případě změní svůj směr o větší úhel. Při předání menší části energie je tomu naopak: odchýlení dráhy elektronu (po srážce s fotonem) od původního směru fotonu je větší, odchýlení fotonu je menší.

Při Comptonově jevu se tedy počet fotonů nemění, fotony se pouze rozptylují z původního směru, ztrácejí část své energie a zvětšují svoji vlnovou délku.


Uvažujme takové uspořádání experimentu, kdy na elektron, který je v klidu dopadá foton (tedy elektromagnetické záření).

Energii dopadajícího fotonu lze vyjádřit jako

,

kde je Planckova konstanta a je frekvence, a jeho hybnost je rovna

,

kde je rychlost světla.

Podle zákona zachování energie se změna energie fotonu během srážky rovná změně (tedy přírůstku) kinetické energie elektronu, tzn.

.

kde je frekvence dopadajícího fotonu, je frekvence fotonu po srážce a je kinetická energie elektronu po srážce (kinetická energie elektronu před srážkou je na základě předpokladu o uspořádání experimentu nulová).

K výpočtu energie elektronu musíme použít relativistický vztah, neboť po srážce se elektron bude pohybovat rychlostí blízkou rychlosti světla. Celkovou energii elektronu po srážce lze vyjádřit jako

,

kde označuje klidovou hmotnost částice a je hybnost elektronu po srážce. Klidová hmotnost fotonu je nulová, klidová hmotnost elektronu je .

Protože před srážkou byla rychlost elektronu nulová, je energie elektronu před srážkou rovna . Po srážce je celková energie elektronu rovna klidové energii zvětšené o energii získanou od fotonu, tzn. . Dva předcházející vztahy dávají dohromady relaci

Za kinetickou energii dosadíme , čímž dostaneme po úpravě výraz


Podle zákona zachování hybnosti musí platit

a poněvadž

,

kde je vektor hybnosti dopadajícího fotonu, je vektor hybnosti fotonu po srážce a je hybnost elektronu po srážce, přičemž se vychází z předpokladu, že na základě uspořádání experimentu lze hybnost elektronu před srážkou položit rovnu nule.

Označíme-li jako úhel mezi směrem dopadajícího a rozptýleného paprsku, tzn. úhel mezi vektory a , můžeme předchozí vztah upravit na tvar


Kombinací vztahů získaných ze zákona zachování energie a zákona zachování hybnosti pak plyne

Pomocí vlnové délky [] lze tento vztah přepsat


Veličina se nazývá Comptonův posuv a lze ji vyjádřit jako

Tento vztah je označován jako Comptonova rovnice. Veličina se nazývá Comptonova vlnová délka.


Podle Comptonovy rovnice dochází k největší změně vlnové délky pro úhel rozptylu , tzn.


Comptonův jev prokázal, že foton má nejen energii, ale také hybnost, tzn. prokázal částicovou povahu elektromagnetického záření.

Inverzní Comptonův jev

Inverzní Comptonův rozptyl je obrácený jev. Lze jej popsat jako Thomsonův rozptyl v klidové soustavě.[1]

Reference

Související články