Zlato: Porovnání verzí

Z Wikipedie, otevřené encyklopedie
Smazaný obsah Přidaný obsah
Sweepy (diskuse | příspěvky)
Bez shrnutí editace
Řádek 120: Řádek 120:
|S-věty=
|S-věty=
}}
}}

'''Zlato''' (latinsky ''Aurum'', chemická značka prvku '''Au''') je chemicky odolný, velmi dobře [[tepelná vodivost|tepelně]] i [[elektrická vodivost|elektricky vodivý]], ale poměrně měkký [[drahý kov]] žluté barvy. Již od dávnověku byl používán pro výrobu dekorativních předmětů a šperků a jako platidlo. V současné době je navíc důležitým materiálem v elektronice, kde je ceněn jeho nízký [[přechodový odpor]] a odolnost proti [[koroze|korozi]]. V přírodě se vyskytuje zejména ryzí.
'''Zlato''' ([[latinsky]] ''Aurum'', chemická značka prvku '''Au''') je chemicky odolný, velmi dobře [[tepelná vodivost|tepelně]] i [[elektrická vodivost|elektricky vodivý]], ale poměrně měkký [[drahý kov]] žluté barvy. Již od dávnověku byl používán pro výrobu dekorativních předmětů a šperků a jako platidlo. V současné době je navíc důležitým materiálem v elektronice, kde je ceněn jeho nízký [[přechodový odpor]] a odolnost proti [[koroze|korozi]]. V přírodě se vyskytuje zejména ryzí.


== Základní fyzikálně-chemické vlastnosti ==
== Základní fyzikálně-chemické vlastnosti ==

Verze z 28. 4. 2015, 22:54

Tento článek je o kovovém prvku. O minerálu pojednává článek Zlato (minerál).

Šablona:Infobox Chemický prvek

Zlato (latinsky Aurum, chemická značka prvku Au) je chemicky odolný, velmi dobře tepelně i elektricky vodivý, ale poměrně měkký drahý kov žluté barvy. Již od dávnověku byl používán pro výrobu dekorativních předmětů a šperků a jako platidlo. V současné době je navíc důležitým materiálem v elektronice, kde je ceněn jeho nízký přechodový odpor a odolnost proti korozi. V přírodě se vyskytuje zejména ryzí.

Základní fyzikálně-chemické vlastnosti

Čistá zlatá sraženina získaná procesem skrz lučavkou královskou

Zlato je chemicky velmi odolný kov. Z běžných anorganických kyselin reaguje pouze s lučavkou královskou (HNO3]:HCl), jíž se rozpouští za vzniku tetrachlorozlatitého aniontu [Au(Cl)4]. V alkalickém prostředí se zlato rozpouští v přítomnosti kyanidových iontů (za přítomnosti kyslíku), přičemž vzniká komplexní kyanozlatnan [Au(CN)2].

Speciální případ představuje rozpouštění zlata v elementární rtuti. Již středověcí alchymisté věděli, že při kontaktu zlata se rtutí velmi snadno vzniká zvláštní roztok zlata ve rtuti, amalgám. Amalgám přitom zůstává kapalný i při poměrně vysokých obsazích zlata. Zahřátím amalgámu na teplotu nad 300 °C se rtuť odpaří a zbude ryzí zlato.

V roce 1997 objevili japonští chemici směs organických sloučenin, která údajně rozpouští zlato.[zdroj?] Jde o směs jodu, tetraetylamoniumjodidu a acetonitrilu, která při teplotě varu (82 °C) tvoří nasycený roztok. Snížením teploty roztoku pod 20 °C se z roztoku vysráží čistý kov. Zlato je také rozpustné ve vodném roztoku jodidu draselného a jodu. Pomocí tohoto roztoku lze snadno rozpouštět především tenké vrstvy zlata.[1]

Zlato je mimořádně trvanlivé a odolné vůči povětrnostním i chemickým vlivům. Pevnost a tvrdost zlata je možné zvýšit přidáním jiných kovů. Pozlacené průhledné plastické fólie mají vynikající odrazivost světelných a tepelných (infra-) paprsků. Zlatá fólie může chránit před únikem tělesného tepla (např. v porodnictví nebo v extrémních přírodních podmínkách).

Výskyt v přírodě a získávání

Přírodní kovové zlato
Krystalické zlato z dolu Mina Zapata, Santa Elena de Uairen, Venezuela. Velikost: 3.7 x 1,1 x 0,4 cm.
Deset států pokrývá 67% světové produkce zlata

Zlato je v zemské kůře značně vzácným prvkem. Průměrný obsah činí pouze 4 – 5 ppb (μg/kg). V mořské vodě je jeho koncentrace značně nízká, přesto však díky vysoké koncentraci chloridových iontů ne zcela zanedbatelná – uvádí se hodnota 0,011 μg Au/l. Ve vesmíru připadá na jeden atom zlata přibližně 300 miliard atomů vodíku.

V horninách se díky své inertnosti vyskytuje prakticky pouze jako ryzí kov. Krychlový nerost, tvoří plíšky a zrna uzavřená nejčastěji v křemenné výplni žil. Krystaly nejsou hojné, často mikroskopicky rozptýleny v šedém žilném křemeni.

Vyskytuje se ryzí nebo ve slitině se stříbrem (elektrum). Po rozrušení žil se dostává do náplavů a odtud se rýžuje. Nejbohatší světová naleziště jsou v jižní Africe, na Uralu, v Austrálii; valouny zlata (nugety, až kilogramové) v Kanadě a na Sibiři. Viz také zlato (minerál).

Největší producenti zlata (podle The Atlantic, 2008): 1. Jihoafrická republika 11,0% světové produkce, 2. USA 10,5%, 3. Austrálie 10,1%, 4. Čína 9,7%, 5. Peru 8,2%, 6. Rusko 6,2%, 7. Kanada 4,2%[2]

Těžba zlata ve světě (za rok 2013, v tunách, podle U. S. Geological Survey):[3]

  • 1. Čína Čína 420
  • 2. Austrálie Austrálie 255
  • 3. USA USA 227
  • 4. Rusko Rusko 220
  • 5. Peru Peru 150
  • 6. Jižní Afrika JAR 145
  • 7. Kanada Kanada 120
  • 8. Mexiko Mexiko 100
  • 9. Uzbekistán Uzbekistán 93
  • 10. Ghana Ghana 85

V současné době jsou rýžovatelná ložiska zlata již většinou vyčerpána. Avšak v historii bylo rýžování první a jednou z nejvýznamnějších metod získávání zlata z přírody. Všechny metody rýžování jsou založeny na principu gravitační separace lehčích částic písku. Dnes se proto těží primární ložiska, kde je zlato velmi jemně rozptýleno v hornině a kov je z horniny získáván hydrometalurgicky.

Proces spočívá v jemném namletí horniny, aby se do kontaktu s loužicím roztokem mohla dostat většina přítomných mikroskopických zlatých zrnek. Namletá hornina se potom louží buď kyselým roztokem s vysokým obsahem chloridových iontů a oxidačním prostředím (např. sycení plynným chlorem nebo přídavky kyseliny dusičné) nebo naopak roztokem alkalických kyanidů za probublávání vzdušným kyslíkem.

Z loužicího roztoku se poté zlato získává redukcí, např. průchodem elektrického proudu roztokem – elektrochemicky, kdy se kovové zlato vyloučí na záporné elektrodě – katodě. Redukci je možno provést i chemicky přídavkem vhodného redukčního činidla (hydrazin, kovový hliník apod.).

Amalgamační způsob těžby zlata z rud byl používán v minulosti pro těžení náplavů, v nichž bylo zlato přítomno ve formě větších oddělených zrnek, která se však již obtížně získávala rýžováním. Pro tento účel byla zlatonosná hornina kontaktována s kovovou elementární rtutí.

Vzniklý amalgám zlata byl po oddělení horniny obvykle prostě pyrolyzován a rtuť byla jednoduše odpařena do atmosféry. V současné době se tento postup téměř nepoužívá a pokud ano, je zlato z amalgámu získáváno šetrnějším způsobem bez kontaminace atmosféry parami rtuti.

Do roku 2014 bylo vytěženo přibližně 175 000 tun zlata[4] (krychle o hraně asi 21 m).

Největším vlastníkem zlata jsou USA. Mají celkem 261 498 926 trojských uncí (8 133,5 tun) zlata. Více než polovinu mají uloženu v kentuckém Fort Knoxu, zbytek leží ve West Pointu a Denveru.[3]

Výskyt v České republice

V Česku jsou zlatonosné žíly mj. ve středních Čechách (např. Jílové u Prahy, Roudný, Veselý kopec u Mokrska, okolí Rožmitálu), v Jeseníkách (Zlaté Hory) a v okolí Kašperských ho.. Vzhledem ke snaze zahraničních firem o průmyslovou těžbu zlata v ČR vzniklo v roce 1996 sdružení Čechy nad zlato, které sdružuje převážně města a obce z potenciálně ohrožených lokalit.[5]

Ekologická rizika těžby zlata

Důl typu Carlin v Nevadě, USA
Vstup do podzemního dolu ve Viktorii v Austrálii

Hydrometalurgický postup dobývání zlata z nízkoryzostních rud představuje značně rizikový proces z ekologického hlediska. Nasazení kyanidových roztoků v tunových až stotunových šaržích představuje obrovské riziko v případě, že dojde k nepředvídané havárii. Příkladem může být katastrofální zamoření Dunaje kyanidy a těžkými kovy z rumunského hydrometalurgického provozu Baia Mare v lednu 2000.[6] Výsledkem byla přírodní katastrofa – stovky tun mrtvých ryb a dalších živočichů a porušení životní rovnováhy rozsáhlého území na desítky let. K haváriím podobného druhu došlo několikrát i v USA nebo jihoamerické Brazílii, kdy byla zamořena řeka Amazonka.

Problém je také používání kovové rtuti pro tzv. amalgamační způsob těžby zlata, např. v Mongolsku[7], v Jižní Americe nebo v Africe.[8]

Nelze zanedbat ani problémy s vhodným uložením tisícitunových kvant vyloužené horniny. Její zemědělské využití je v současné době prakticky nemožné a tak tvoří pouze balast, kterého se těžařská společnost musí nějak zbavit.

Kvůli potencionálním rizikům při použití kyanidů jsou vyvíjeny nové metody, jako například loužení v roztoku thiomočoviny. Rozsáhlejšímu nasazení této metody zatím brání ekonomické faktory.

Využití

Šperky, pozlacování

Používá se zejména k výrobě šperků a to ve formě slitin se stříbrem, mědí, zinkem, palladiem či niklem). Samotné ryzí zlato je příliš měkké a šperky z něj zhotovené by se nehodily pro praktické použití. Příměsi palladia a niklu navíc zbarvují vzniklou slitinu – vzniká tak v současné době dosti moderní bílé zlato (jako "bílé zlato" se dříve přeneseně označoval např. porcelán, cukr či sůl). Obsah zlata v klenotnických slitinách neboli ryzost se vyjadřuje v karátech (ryzí zlato je 24karátové).

Výroba a dovoz šperků a výrobků ze zlata podléhá puncovnímu zákonu. Šperky a produkty, jak nové, tak i staré určené k prodeji jsou opatřené puncem. Punc je rozdílný pro každou ryzost zvlášť.

I velmi tenký zlatý film na povrchu neušlechtilého kovu jej dokáže účinně ochránit před korozí. Pozlacování kovových materiálů se obvykle provádí elektrolytickým vylučováním zlata na příslušném kovu, který je ponořen do zlatící lázně a je na něj vloženo záporné napětí (působí jako katoda). Kromě toho zlacení zvyšuje hodnotu pokoveného předmětu, jako příklad mohou sloužit různé sportovní a příležitostné medaile, pamětní mince, bižuterie apod.

Na nekovové povrchy (dřevo, kámen) se zlato nanáší mechanicky, přičemž se využívá faktu, že kovové zlato lze rozválcovat nebo vyklepat do mimořádně tenkých fólií o tloušťce pouze několika mikrometrů (z 1 g zlata lze vyrobit fólii o ploše až 1 m²). Zajímavé je, že tyto velmi tenké fólie mají při pohledu proti světlu zelenou barvu. V tomto případě má zlatá fólie na povrchu pozlacovaného předmětu funkci nejen ochrannou, ale i estetickou (pozlacené sochy, části staveb).

Průmysl

Pozlacené kontakty na plošném spoji

Vzhledem ke své vynikající elektrické vodivosti a inertnosti vůči vlivům prostředí je velmi často používáno v mikroelektronice a počítačovém průmyslu. Hlavním oborem využití je zde především zajištění dlouhodobé a bezproblémové vodivosti důležitých spojů v počítači (např. kontakty mikroprocesoru). Pro tyto účely se příslušné kontaktní povrchy elektrolyticky pokrývají tenkou zlatou vrstvou.

Zlato se využívá i ve sklářském průmyslu k barvení nebo zlacení skla. Na povrch skleněného předmětu se přitom nejprve štětečkem nanáší roztok komplexních sloučenin zlata v organické matrici. Po vyžíhání se organické rozpouštědlo odpaří a na povrchu skla zůstane trvalá zlatá kresba. Přídavky malých množství zlata do hmoty skloviny se dosahuje zbarvení skla různými odstíny červené barvy.

Zubní lékařství

Zlato je již dlouhou dobu součástí většiny dentálních slitin, tedy materiálů sloužících v zubním lékařství jako výplně zubů napadených zubním kazem nebo pro konstrukci můstků a jiných aplikacích. Důvodem je především zdravotní nezávadnost zlata, které je natolik chemicky inertní, že ani po mnohaletém působení poměrně agresivního prostředí v ústní dutině nepodléhá korozi. Čisté zlato je však příliš měkké a proto se v aplikují jeho slitiny především s mědí, stříbrem, palladiem, zinkem, cínem, antimonem, někdy je součástí dentální slitiny také indium, iridium, rhodium nebo platina.

Bankovnictví a finanční spekulace

Po dlouhou dobu sloužilo zlato uložené ve státních bankách jako zlatý standard, garantující hodnotu státem vydávaného oběživa. Po druhé světové válce význam zlata jako devizy postupně klesal a zcela tuto funkci přestalo plnit až v roce 1971. Při obchodování se zlatem pro bankovní účely bývá zvykem označovat jeho hmotnost v trojských uncích, což je stará jednotka odpovídající 31,1035 g.

Zlato je možné používat jako investiční nástroj, lze nakoupit tzv. investiční zlato, které je dle evropské legislativy osvobozeno od DPH. Pro tyto účely vydávají světové mincovny novoražby a zlaté slitky (cihly). Vynikají tím, že v malém objemu koncentrují velkou finanční hodnotu a mají často i značnou estetickou hodnotu.

Světová cena zlata

Vývoj ceny zlata na komoditních burzách [9]

Zlato, stejně jako jiné drahé kovy je komoditou s kterou se obchoduje na světových burzách. Základní a nejznámější je burza Londýn, ta zveřejňuje průběžně výsledky obchodování tzv. Lodnon FIX a London SPOT. Světová cena zlata je pak udávaná v dolarech za trojskou unci (USD/oz).

Platidlo

Zlato a mince z něj ražené byly po tisíciletí rozšířeným platidlem. Pro měkkost zlata se z něj velice dobře razily zlaté mince. Nejznámější a nejrozšířenější zlatou mincí byl Dukát. Zlatý dukát rozšířený po celé Evropě v královstvích a císařstvých, ale pro svoji oblíbenost se razil a razí dál nejen v Čechách, ale i Rakousku a v dalších zemích dodnes. První nejznámější zlaté mince na našem území jsou zlaté keltské mince statéry známé jako duhovky (nacházené po dešti).

Mytologie

V egyptské mytologii se věřilo, že bohové jsou (jejich maso) ze zlata.[10] V řecké vystupuje zlato jako ichor (krev bohů a nesmrtelných), zlatá jablka nesmrtelnosti (které hlídaly Hesperidky) či zlaté rouno. Pro Inky bylo zlato symbolem Slunce (bůh Inti). I Hélios putoval na zlatém člunu.

Sloučeniny

Odkazy

Reference

  1. Etching method using iodine-containing solutions in manufacture of semiconductor devices; Jpn. Kokai Tokkyo Koho (1997), 5 pp. CODEN:JKXXAF; JP09125300
  2. DEYL, Daniel. Dědicové krále Midase. Týden. Leden 2009, čís. 2/2009, s. 34–39. 
  3. a b http://cestovani.idnes.cz/zlata-horecka-na-aljasce-0wi-/kolem-sveta.aspx?c=A150319_160826_kolem-sveta_tom
  4. http://www.gold.org/history-and-facts/facts-about-gold
  5. Sdružení obcí, měst a dalších právnických osob  Čechy nad zlato
  6. Joint UNEP/OCHA Environment Unit: UN assessment mission – Cyanide Spill at Baia Mare, March 2000
  7. Mongolská zlatá horečka ničí řeky i život nomádů, aktualne.cz, 8.11.2008
  8. Miroslav Šuta: Jak se (taky) rodí zlato, respekt.cz, 29. ledna 2008
  9. Komodity - Zlato - Vývoj ceny zlata na komoditních burzách
  10. http://andulla.cz/Zajimavosti/MocZlata.htm - Moc zlata v životě starověkých civilizací

Literatura

  • Cotton F.A., Wilkinson J.:Anorganická chemie, souborné zpracování pro pokročilé, ACADEMIA, Praha 1973
  • Holzbecher Z.:Analytická chemie, SNTL, Praha 1974
  • Dr. Heinrich Remy, Anorganická chemie 1. díl, 1. vydání 1961
  • N. N. Greenwood – A. Earnshaw, Chemie prvků 1. díl, 1. vydání 1993 ISBN 80-85427-38-9

Související články

Externí odkazy

Šablona:Tabulka prvků