Lagrangeova interpolace: Porovnání verzí

Skočit na navigaci Skočit na vyhledávání
Přidáno 142 bajtů ,  před 9 lety
bez shrnutí editace
U polynomů vyšších řádů je výše popsaný postup časově náročný. Proto se využívá rovnosti <math>L_n(x) = a_0+a_1x^1 + \cdots + a_nx^n = \sum_{i=0}^n a_ix^i = f(x)</math>, ke konstrukci matice <math> \Lambda </math> typu <math>n \times n</math>, jejíž řádky reprezentují lagrangeův polynom n-tého stupně vyčíslený v bodech <math>[x_i,f(x_i)]</math>. Vektor pravých stran je identickým se sloupcovým vektorem <math>f(x_i)</math>.
 
<center>
{|
<math>\Lambda =
|-
| <center> <math> \Lambda =
\begin{pmatrix}
a_0 & a_1x_1 & a_2x_1^2 &\cdots & a_nx_1^n \\
a_0 & a_1x_2 & a_2x_2^2 & \cdots & a_nx_n^n \\
\end{pmatrix}</math>
<\/center>|| <center> <math> \f(x_i) =
\begin{pmatrix}
f(x_0) \\
\vdots \\
f(x_i) \\
\vdots \\
f(x_n) \\
\end{pmatrix}</math>
</center>
|}
 
 
Neznámé konstanty <math>a_0, a_1, \cdots ,a_n</math> pak nalezneme některou z metod řešení matic (např. [[Gaussova eliminační metoda]]).
Neregistrovaný uživatel

Navigační menu