Termická konvekce: Porovnání verzí

Z Wikipedie, otevřené encyklopedie
Smazaný obsah Přidaný obsah
Flying (diskuse | příspěvky)
Bez shrnutí editace
Flying (diskuse | příspěvky)
Bez shrnutí editace
Řádek 54: Řádek 54:
[http://www.bourky.com Bouřky.com]<br />
[http://www.bourky.com Bouřky.com]<br />
[http://www.jasno.cz www.jasno.cz, stránky meteorologa Petra Dvořáka]<br />
[http://www.jasno.cz www.jasno.cz, stránky meteorologa Petra Dvořáka]<br />
[http://www.chmi.cz [[ČHMÚ | Český hydrometeorologický ústav]]]<br />
[http://www.chmi.cz Český hydrometeorologický ústav]<br />


[[Kategorie:Meteorologie]]
[[Kategorie:Meteorologie]]

Verze z 30. 4. 2008, 02:24

V meteorologii představuje pojem termické konvekce převážně vertikální pohyby vzduchu, vyvolané teplotními rozdíly mezi vzduchovými částicemi a okolní atmosférou. Jedná se tedy o působení archimédovské vztlakové síly na vzduchové částice, které při zvýšení své teploty nad teplotu obklopujícího atmosférického prostředí nabydou nižší hustoty, tj. nižší hmotnosti, a díky tomu začnou samovolně stoupat do výšky. Tyto vertikální výstupné pohyby jsou samovolné — nazývají se volná konvekce, vzduch je vynášen vzhůru jen na základě své vztlakové síly, dané rozdílem hustoty, resp. teploty, mezi částicí a jejím bezprostředním okolím.
Termická konvekce představuje převážně vertikálně orientované pohyby vzduchových částic v prostředí okolní atmosféry. Stoupavé proudy vystupují do takové výšky, dokud se jejich pohybová energie zcela nevyčerpá na tření, turbulentní výměnu s okolní atmosférou a tepelnou výměnu. Během výstupu dochází k prolínání vzduchu z vnitřní části konvektivních proudů se vzduchem v okolní obklopující atmosféře.
Termickou bublinu si lze představit jako objem vzduchu, připomínající svým tvarem kouli, polštář nebo balón. Od okolní atmosféry je teplotně oddělena virtuálním tepelně neprostupným povrchem — toto zjednodušení vychází z předpokladu, že během výstupu či sestupu bubliny se nestačí projevit tepelná výměna mezi bublinou a atmosférou, nedochází ani k výměně hmoty vzduchu, a celý proces tak považujeme za adiabatický. Tlak vzduchu v bublině a v jejím okolí se rychle vyrovnává a v dané hladině je stejný uvnitř i vně bubliny. Dokonce i za přítomnosti turbulence si bublina může udržovat svoji „identitu“ po dobu své uvažované existence. K termické bublině můžeme přistupovat jako k termodynamické soustavě, kterou lze popsat tlakem, teplotou a směšovacím poměrem. Z těchto veličin je od okolního atmosférického prostředí zřetelně odlišná teplota vzduchu.
Vertikální rozdělení konvektivní směšovací vrstvy na tři podvrstvy [podle Driedonkse a Tennekese] vychází z charakteru interakce stoupavého proudu s jeho okolím: v přízemní vrstvě dochází k přenosu tepelné energie ze zemského povrchu do přiléhajícího vzduchu. Těsně u země je tento přenos zprostředkován molekulární difuzí, výše potom turbulentní výměnou. Tepelná energie se v přízemní vrstvě využije k expanzi vzduchových bublin a k uvedení do vertikálního pohybu směrem vzhůru vlivem kladného přebytku tepla vůči okolnímu vzduchu. Nad přízemní vrstvou následuje nejsilnější podvrstva — vrstva směšování. V její spodní části dochází k postupnému zrychlování výstupné rychlosti, jak ukázaly experimenty s měřením pomocí letadel. K uvedení do vertikálního pohybu je žádoucí, i když nikoli nutný, nějaký vnější impuls, například mechanický (závan větru, proudění větru do zužujícího se prostoru, pohyb tělesa po zemském povrchu, turbulence způsobená větrem vanoucím přes překážky). Ve vrcholové části konvektivní vrstvy je zóna vtahování, častěji označovaná anglickým termínem entrainment zone. Její tloušťka se pohybuje mezi 10–60% celé konvektivní vrstvy a je charakteristická turbulentním prolínáním se vzduchem z volné atmosféry, ležícím nad ní — tento vzduch je vlivem turbulence zatahován dolů do entrainment zone, kde se mísí se vzduchem v konvektivní vrstvě.
V instabilní přízemní vrstvě identifikujeme „malé struktury“, jako vertikálně se pohybující a vztlakující bubliny, čáry konvergence, plošně větší oblasti stoupajícího vzduchu, prachové víry. Ve vyšších partiích směšovací vrstvy pozorujeme termické struktury větších rozměrů, horizontálně rotující víry a konvektivní proudy mezoměřítkových rozměrů. V entrainment zone ve vrcholové části směšovací vrstvy nacházíme přerývanou turbulenci, přesahující termiku, Kelvin-Helmholtzovy vlny, dynamické vlny na rozhraní dvou odlišných vektorů proudění [anglicky ozn. „gravity waves“] a někdy oblačnost. Velmi často se celá konvektivní mezní vrstva ztotožňuje se směšovací vrstvou.

Pro vyvolání výstupného pohybu jsou potřebné určité fyzikální podmínky. Nejdůležitější z nich je získání potřebného přebytku tepelné energie vzduchové částice, dále vhodný spouštěcí mechanismus termiky, jímž může být například nějaký mechanický impuls ( turbulence, vynucené zakřivení proudnic větru, orografie, konfluence, nasouvání chladnějšího vzduchu nad prohřátý terén, atp.).
Pro udržení výstupného pohybu jsou pak potřeba další podmínky. Zkombinováním rovnice hydrostatické rovnováhy a první hlavní věty termodynamické obdržíme vztah, popisující změnu teploty vystupující částice podél vertikály:

(dT/dz)d = -g/cp [vztah 1]

kde g je tíhové zrychlení, cp je měrné teplo nenasyceného vzduchu při stálém tlaku. Výraz (dT/dz)d představuje suchoadiabatický vertikální teplotní gradient. Někdy se též nazývá nenasyceně-adiabatický, jelikož pojmem "suchoadiabatický" by se správně měl rozumět proces pro vzduch, jenž neobsahuje žádnou vodní páru, zatímco "nenasyceně-adiabatický" chápe vzduch s nenulovým, avšak současně méně než stoprocentním nasycením vodní párou. Protože je však rozdíl mezi zcela suchým vzduchem a nenasyceným vzduchem z hlediska termodynamiky zanedbatelný, používají se pro nenasycený vzduch stejné rovnice, jako pro vzduch zcela suchý. Jak je vidět, výstupné a sestupné pohyby vzduchových částic se považují za adiabatický proces, tzn. pro zjednodušení se předpokládá, že nedochází k energetické výměně mezi vzduchovou částicí a jejím bezprostředním okolím. Jestliže je teplota vystupující vzduchové částice vyšší, než teplota okolní atmosféry, existuje zrychlení, resp. (při jednotkové hmotnosti částice) síla, směřující vzhůru a uvádějící tuto částici do pohybu. Je tedy zřejmé, že pro trvání výstupného pohybu vzduchové částice je nezbytně nutný kladný přebytek její teploty, tj.

(dT/dz)atmosféry > (dT/dz)d [vztah 2]

přičemž průběh (dT/dz)atmosféry se nazývá teplotní zvrstvení nebo také stratifikace atmosféry. Pokud je v nenasyceném vzduchu splněna podmínka [vztah 2], mluvíme o instabilním či také labilním zvrstvení, při kterém se může termická konvekce úspěšně rozvíjet a trvat. Naopak, pokud platí, že

(dT/dz)atmosféry < (dT/dz)d [vztah 2]

je atmosféra tzv. stabilní (pro nenasycený vzduch) a případný výstupný pohyb vzduchové částice (který jí byl udělen například nějakým vnějším impulsem, jako je vynucený výstup přes překážku, apod.) brzy zaniká, neboť síla, která na vzduchovou částici působí, směřuje nyní kolmo k zemskému povrchu dolů. V takovémto prostředí termika nevzniká. Velikost této síly je dána vztahem

F=-[(rp-re)/re]g = [(TV(z)p-TV(z)e)/TV(z)e]/g [vztah 3]

kde index p přiřazuje danou proměnnou vystupující vzduchové částici (z angl. "parcel"), index e přiřazuje proměnné atmosférickému okolí (z angl. "environment"), proměnná r je hustota vzduchu, TV je virtuální teplota, g je tíhové zrychlení, z je výšková souřadnice.

Atmosférická konvekce je vždy více či méně turbulentní a nabývá mnoha různých modifikací:
– bezoblačné termické stoupavé proudy, které při svém výstupu nedostoupí do kondenzační hladiny. Konvekce v mezní vrstvě je tzv. suchá a poměrná vlhkost je v celém vertikálním rozsahu mezní vrstvy nižší než 100%.
– vystupující bubliny dostatečně vlhkého teplejšího vzduchu, které při výstupu dosáhnou hladiny kondenzace, nad níž se pak formují kupovitá oblaka. V závislosti na dalších podmínkách v atmosféře se pak oblaka mohou rozvíjet do velkých oblačných útvarů, jakými jsou například bouřkové oblaky Cb.
Během kondenzování oblačné vody dochází k uvolňování latentního tepla, které přispívá ke zvýšení vztlakové síly. Značná část energie se při výstupu částice spotřebuje na překonání gravitační síly, avšak energie, která je navíc, stačí k utváření některých velmi silných projevů počasí [B10]. Vertikální transport vlhkosti konvekcí nad hladinu 600 hPa je viditelný také na družicových snímcích v oboru WV (Water Vapour). Tento typ konvekce se označuje anglickým termínem „deep moist convection“ (DMC, český ekvivalent není zaveden, možno použít termín „vysoká konvekce vlhkého vzduchu“ či „konvekce vlhkého vzduchu do velkých výšek“). Mělká konvekce, v anglické literatuře označovaná výrazem „shallow convection“, s nižším vertikálním rozsahem, může být pozorována v rámci denní doby dříve než DMC na snímcích ve viditelném a infračerveném oboru spektra [B10]. Můžeme rozlišovat dva hlavní druhy termické konvekce: — konvekce volná, někdy též označovaná jako „gravitační“ nebo „vztlaková“ [B10]. Pohyby vzduchových částic jsou především vertikálně orientované a vyvolávané vztlakovou silou, vyplývající z teplotní instability, s význačnými místními odchylkami od hydrostatické rovnovány. Volná konvekce může také souviset s neadiabatickým přenosem tepla prostřednictvím insolace (krátkovlnné radiace) nad povrchem, který má vyšší tepelnou kapacitu, než ostatní povrchy v jeho okolí. Volná konvekce nastává také nad povrchy s větší insolací, způsobenou expozicí skloněného svahu vůči slunečním paprskům. — konvekce vynucená, kdy je vertikální pohyb způsoben mechanickou silou. Taková situace může nastat například při proudění větru přes zakřivený či jinak nerovný terén. Dále takto může působit tření proudícího vzduchu v místě, kde tekutina hraničí s terénem nebo jiným typem proudění a na rozhraní je tak vyvolávána turbulence. Konvekce se může nuceně tvořit i tam, kde je pohyb vzduchu vyvolán vzniklým tlakovým gradientem. Mimoto je tento typ konvekce způsobován i orografickou konvergencí proudění, stoupáním vzduchu v závětrné turbulenci za horskými hřebeny či gravitačními vlnami.






Literatura
An Introduction to Boundary Layer Meteorology, Stull Roland, Kluwer Academic Press, 2003
Fyzika mezní vrstvy atmosféry, Bednář Jan, Academia Praha, 1985
Meteorologie, Bednář Jan, Portál Praha, 2003
Zlepšení metod předpovědi termické konvekce, Dvořák Petr, rigorózní práce, MFF UK, 2008
Výpočet konvekční dostupné potenciální energie CAPE a možnosti jejího využití v provozu ČHMÚ, Meteorologické zprávy č. 3/2004
http://www.zamg.ac.at/docu/Manual/SatManu/Basic/Convection/Stability.htm
http://www.chmi.cz/meteo/olm/Let_met/_tmp/Cape.htm
http://www.wxforecasting.org/papers/CI.htm



Zajímavé nebo související odkazy:
Stránky meteorologa dr. Martina Setváka
Bouřky.com
www.jasno.cz, stránky meteorologa Petra Dvořáka
Český hydrometeorologický ústav