Statistická fyzika: Porovnání verzí

Z Wikipedie, otevřené encyklopedie
Smazaný obsah Přidaný obsah
JAnDbot (diskuse | příspěvky)
m Robot: přidáno {{Autoritní data}}; kosmetické úpravy
m typografické úpravy
Řádek 1: Řádek 1:
{{Upravit}}
{{Upravit}}
'''Statistická fyzika''' je jednou z centrálních oblastí [[teoretická fyzika|teoretické fyziky]]. V tradičnějším pojetí se zabývá zkoumáním vlastností [[makroskopický]]ch systémů či soustav, přičemž bere v úvahu [[mikroskopický|mikroskopickou]] strukturu těchto systémů. Obecněji statistická fyzika uvádí do vztahu dvě úrovně popisu fyzikální reality - a to úroveň makroskopickou a mikroskopickou.
'''Statistická fyzika''' je jednou z centrálních oblastí [[teoretická fyzika|teoretické fyziky]]. V tradičnějším pojetí se zabývá zkoumáním vlastností [[makroskopický]]ch systémů či soustav, přičemž bere v úvahu [[mikroskopický|mikroskopickou]] strukturu těchto systémů. Obecněji statistická fyzika uvádí do vztahu dvě úrovně popisu fyzikální reality a to úroveň makroskopickou a mikroskopickou.
Zakladateli byli [[Ludwig Boltzmann]] a [[Josiah Willard Gibbs]].
Zakladateli byli [[Ludwig Boltzmann]] a [[Josiah Willard Gibbs]].


Řádek 6: Řádek 6:
Například při studiu systému, která se skládá z velkého počtu mikročástic, nejsme schopni řešit soustavu [[pohybová rovnice|pohybových rovnic]] pro všechny [[částice]], ani zadat příslušné počáteční či okrajové podmínky. Jde tedy o problém s neúplnou (či parciální) informací, u kterého jsme namísto detailní mikroskopické informace o systému odkázáni na neúplný (makroskopický) popis daného systému. Proto statistická fyzika používá popis pomocí [[teorie pravděpodobnosti]], či (tradičněji, avšak méně přesně i obecně řečeno) [[matematická statistika|matematické statistiky]] .
Například při studiu systému, která se skládá z velkého počtu mikročástic, nejsme schopni řešit soustavu [[pohybová rovnice|pohybových rovnic]] pro všechny [[částice]], ani zadat příslušné počáteční či okrajové podmínky. Jde tedy o problém s neúplnou (či parciální) informací, u kterého jsme namísto detailní mikroskopické informace o systému odkázáni na neúplný (makroskopický) popis daného systému. Proto statistická fyzika používá popis pomocí [[teorie pravděpodobnosti]], či (tradičněji, avšak méně přesně i obecně řečeno) [[matematická statistika|matematické statistiky]] .


Statistickou fyziku lze přitom uplatnit ze dvou opačných a stejně užitečných hledisek: Můžeme zadat (postulovat) makroskopické vlastnosti daného fyzikálního (mikro)systému a studovat otázku, jaké jsou pravděpodobnosti jednotlivých stavů mikrosystému při zadaném neúplném popisu. Anebo obráceně - můžeme zadat (postulovat) pravděpodobnosti jednotlivých mikroskopických stavů systému a studovat otázku, jaké makroskopické vztahy jsou se zadaným mikroskopickým popisem slučitelné. Obě uvedená hlediska jsou důležitá pro hlubší pochopení mnoha dalších oblastí fyziky - zejména [[termodynamika|termodynamiky]] a [[kvantová mechanika|kvantové mechaniky]].
Statistickou fyziku lze přitom uplatnit ze dvou opačných a stejně užitečných hledisek: Můžeme zadat (postulovat) makroskopické vlastnosti daného fyzikálního (mikro)systému a studovat otázku, jaké jsou pravděpodobnosti jednotlivých stavů mikrosystému při zadaném neúplném popisu. Anebo obráceně můžeme zadat (postulovat) pravděpodobnosti jednotlivých mikroskopických stavů systému a studovat otázku, jaké makroskopické vztahy jsou se zadaným mikroskopickým popisem slučitelné. Obě uvedená hlediska jsou důležitá pro hlubší pochopení mnoha dalších oblastí fyziky zejména [[termodynamika|termodynamiky]] a [[kvantová mechanika|kvantové mechaniky]].


Protože u reálných (nejen fyzikálních) systémů jsme téměř bez výjimky odkázáni jen na makroskopickou úroveň popisu a [[neúplná informace|neúplnou informaci]], je zřejmé, že základní schéma statistické fyziky je mimořádně obecné a není nikterak omezeno na oblast fyzikálních soustav složených z mnoha částic. Bylo proto již velmi úspěšně použito i v mnoha oblastech mimo fyziku - například v teorii optimalizace, při studiu ekologických i sociálních systémů, v ekonomice, evoluční teorii a genomice, kosmologii, atp.
Protože u reálných (nejen fyzikálních) systémů jsme téměř bez výjimky odkázáni jen na makroskopickou úroveň popisu a [[neúplná informace|neúplnou informaci]], je zřejmé, že základní schéma statistické fyziky je mimořádně obecné a není nikterak omezeno na oblast fyzikálních soustav složených z mnoha částic. Bylo proto již velmi úspěšně použito i v mnoha oblastech mimo fyziku například v teorii optimalizace, při studiu ekologických i sociálních systémů, v ekonomice, evoluční teorii a genomice, kosmologii, atp.


== Entropie ==
== Entropie ==
Jeden ze zásadních poznatků statistické fyziky se týká i samotného pojmu [[entropie]]. Přímo z metody MaxEnt vyplývá, že veličina zvaná entropie je definována teprve tehdy, když je zadána úroveň popisu daného systému. Jinými slovy - když je zadán soubor veličin, které se na daném systému zachovávají, a současně je smluveno, jakou mikroskopickou úroveň popisu máme na mysli. Entropie tedy není veličina, která by měla nějakou hodnotu nezávisle na zvolené úrovni popisu systému. Právě neujasněnost v úrovni popisu vedla v historii statistické fyziky ke zdánlivým paradoxům (např. [[Maxwellův démon]] a [[Laplaceův démon]]) a principiálním teoretickým potížím i slepým uličkám (souvisejícími např. s pojmy [[ergodická hypotéza]] či [[Boltzmannova kinetická rovnice]]). Jak přesvědčivě ukázal zejména [[Edwin Thompson Jaynes|Jaynes]], pokud důsledně vymezíme, jakou makroskopickou i mikroskopickou úroveň popisu uvažujeme, pak žádný z uvedených paradoxů ani principiálních obtíží nevzniká.
Jeden ze zásadních poznatků statistické fyziky se týká i samotného pojmu [[entropie]]. Přímo z metody MaxEnt vyplývá, že veličina zvaná entropie je definována teprve tehdy, když je zadána úroveň popisu daného systému. Jinými slovy když je zadán soubor veličin, které se na daném systému zachovávají, a současně je smluveno, jakou mikroskopickou úroveň popisu máme na mysli. Entropie tedy není veličina, která by měla nějakou hodnotu nezávisle na zvolené úrovni popisu systému. Právě neujasněnost v úrovni popisu vedla v historii statistické fyziky ke zdánlivým paradoxům (např. [[Maxwellův démon]] a [[Laplaceův démon]]) a principiálním teoretickým potížím i slepým uličkám (souvisejícími např. s pojmy [[ergodická hypotéza]] či [[Boltzmannova kinetická rovnice]]). Jak přesvědčivě ukázal zejména [[Edwin Thompson Jaynes|Jaynes]], pokud důsledně vymezíme, jakou makroskopickou i mikroskopickou úroveň popisu uvažujeme, pak žádný z uvedených paradoxů ani principiálních obtíží nevzniká.


Základním pracovním nástrojem statistické fyziky, pomocí kterého uvádíme do vztahu makroskopickou a mikroskopickou úroveň popisu, je [[metoda maximální entropie]]. U této metody vycházíme ze zadání makroskopických veličin, které se v daném systému zachovávají, a poté konstruujeme příslušné rozložení pravděpodobností pro jednotlivé mikroskopické stavy systému. Používáme k tomu [[exponenciální zobrazení]], které se ve statistické fyzice obvykle nazývá [[Gibbsovo velké kanonické rozdělení]] a které je speciálním případem [[Jaynesovy]] [[metody maximální entropie]] ([[MaxEnt]]). Tato metoda umožňuje jednotné odvození všech typů [[rozdělení pravděpodobnosti|pravděpodobnostních rozložení]], která se běžně ve fyzice i jiných oblastech vyskytují: [[Gaussovo rozdělení|Gaussovo (normální)]], [[Boltzmannovo rozdělení|Boltzmannovo]], [[Maxwellovo rozdělení|Maxwellovo]], [[Zipfovo rozdělení|Zipfovo]], [[Lévyho rozdělení|Lévyho]] či [[Mocninná funkce|mocninná rozdělení]], atd. Naopak - obrátíme-li schéma a zadáme pravděpodobnostní rozdělení, lze metodou MaxEnt snadno ukázat, jaké makroskopické veličiny se u zadaného systému nutně zachovávají (viz [[zákony zachování]]).
Základním pracovním nástrojem statistické fyziky, pomocí kterého uvádíme do vztahu makroskopickou a mikroskopickou úroveň popisu, je [[metoda maximální entropie]]. U této metody vycházíme ze zadání makroskopických veličin, které se v daném systému zachovávají, a poté konstruujeme příslušné rozložení pravděpodobností pro jednotlivé mikroskopické stavy systému. Používáme k tomu [[exponenciální zobrazení]], které se ve statistické fyzice obvykle nazývá [[Gibbsovo velké kanonické rozdělení]] a které je speciálním případem [[Jaynesovy]] [[metody maximální entropie]] ([[MaxEnt]]). Tato metoda umožňuje jednotné odvození všech typů [[rozdělení pravděpodobnosti|pravděpodobnostních rozložení]], která se běžně ve fyzice i jiných oblastech vyskytují: [[Gaussovo rozdělení|Gaussovo (normální)]], [[Boltzmannovo rozdělení|Boltzmannovo]], [[Maxwellovo rozdělení|Maxwellovo]], [[Zipfovo rozdělení|Zipfovo]], [[Lévyho rozdělení|Lévyho]] či [[Mocninná funkce|mocninná rozdělení]], atd. Naopak obrátíme-li schéma a zadáme pravděpodobnostní rozdělení, lze metodou MaxEnt snadno ukázat, jaké makroskopické veličiny se u zadaného systému nutně zachovávají (viz [[zákony zachování]]).


== Související články ==
== Související články ==

Verze z 30. 7. 2019, 14:18

Statistická fyzika je jednou z centrálních oblastí teoretické fyziky. V tradičnějším pojetí se zabývá zkoumáním vlastností makroskopických systémů či soustav, přičemž bere v úvahu mikroskopickou strukturu těchto systémů. Obecněji statistická fyzika uvádí do vztahu dvě úrovně popisu fyzikální reality – a to úroveň makroskopickou a mikroskopickou. Zakladateli byli Ludwig Boltzmann a Josiah Willard Gibbs.

Příklad

Například při studiu systému, která se skládá z velkého počtu mikročástic, nejsme schopni řešit soustavu pohybových rovnic pro všechny částice, ani zadat příslušné počáteční či okrajové podmínky. Jde tedy o problém s neúplnou (či parciální) informací, u kterého jsme namísto detailní mikroskopické informace o systému odkázáni na neúplný (makroskopický) popis daného systému. Proto statistická fyzika používá popis pomocí teorie pravděpodobnosti, či (tradičněji, avšak méně přesně i obecně řečeno) matematické statistiky .

Statistickou fyziku lze přitom uplatnit ze dvou opačných a stejně užitečných hledisek: Můžeme zadat (postulovat) makroskopické vlastnosti daného fyzikálního (mikro)systému a studovat otázku, jaké jsou pravděpodobnosti jednotlivých stavů mikrosystému při zadaném neúplném popisu. Anebo obráceně – můžeme zadat (postulovat) pravděpodobnosti jednotlivých mikroskopických stavů systému a studovat otázku, jaké makroskopické vztahy jsou se zadaným mikroskopickým popisem slučitelné. Obě uvedená hlediska jsou důležitá pro hlubší pochopení mnoha dalších oblastí fyziky – zejména termodynamiky a kvantové mechaniky.

Protože u reálných (nejen fyzikálních) systémů jsme téměř bez výjimky odkázáni jen na makroskopickou úroveň popisu a neúplnou informaci, je zřejmé, že základní schéma statistické fyziky je mimořádně obecné a není nikterak omezeno na oblast fyzikálních soustav složených z mnoha částic. Bylo proto již velmi úspěšně použito i v mnoha oblastech mimo fyziku – například v teorii optimalizace, při studiu ekologických i sociálních systémů, v ekonomice, evoluční teorii a genomice, kosmologii, atp.

Entropie

Jeden ze zásadních poznatků statistické fyziky se týká i samotného pojmu entropie. Přímo z metody MaxEnt vyplývá, že veličina zvaná entropie je definována teprve tehdy, když je zadána úroveň popisu daného systému. Jinými slovy – když je zadán soubor veličin, které se na daném systému zachovávají, a současně je smluveno, jakou mikroskopickou úroveň popisu máme na mysli. Entropie tedy není veličina, která by měla nějakou hodnotu nezávisle na zvolené úrovni popisu systému. Právě neujasněnost v úrovni popisu vedla v historii statistické fyziky ke zdánlivým paradoxům (např. Maxwellův démon a Laplaceův démon) a principiálním teoretickým potížím i slepým uličkám (souvisejícími např. s pojmy ergodická hypotéza či Boltzmannova kinetická rovnice). Jak přesvědčivě ukázal zejména Jaynes, pokud důsledně vymezíme, jakou makroskopickou i mikroskopickou úroveň popisu uvažujeme, pak žádný z uvedených paradoxů ani principiálních obtíží nevzniká.

Základním pracovním nástrojem statistické fyziky, pomocí kterého uvádíme do vztahu makroskopickou a mikroskopickou úroveň popisu, je metoda maximální entropie. U této metody vycházíme ze zadání makroskopických veličin, které se v daném systému zachovávají, a poté konstruujeme příslušné rozložení pravděpodobností pro jednotlivé mikroskopické stavy systému. Používáme k tomu exponenciální zobrazení, které se ve statistické fyzice obvykle nazývá Gibbsovo velké kanonické rozdělení a které je speciálním případem Jaynesovy metody maximální entropie (MaxEnt). Tato metoda umožňuje jednotné odvození všech typů pravděpodobnostních rozložení, která se běžně ve fyzice i jiných oblastech vyskytují: Gaussovo (normální), Boltzmannovo, Maxwellovo, Zipfovo, Lévyho či mocninná rozdělení, atd. Naopak – obrátíme-li schéma a zadáme pravděpodobnostní rozdělení, lze metodou MaxEnt snadno ukázat, jaké makroskopické veličiny se u zadaného systému nutně zachovávají (viz zákony zachování).

Související články