Oprava DNA: Porovnání verzí

Z Wikipedie, otevřené encyklopedie
Smazaný obsah Přidaný obsah
TakoJaki (diskuse | příspěvky)
m Překlad části pod opravou DNA.
TakoJaki (diskuse | příspěvky)
m Oprava chyb z překladu.
Řádek 91: Řádek 91:
=== Přímý zvrat poškození ===
=== Přímý zvrat poškození ===
Do této skupiny opravných mechanismů patří například [[fotolyáza]], [[enzym]], jenž je schopen opravit chyby způsobené paprsky [[ultrafialové záření|ultrafialového (UV) záření]] (vlnové délky 300 - 500 nm). UV záření je schopné spojit vazbou dvou sousedních [[thymin]]ových bází, čímž vzniká tzv. [[thyminový dimer]] (někdy však podobná situace může vzniknout i s [[cytosin]]em). Fotolyáza se naváže ve tmě na thyminový dimer a poté ve dne absorbují její [[kofaktor (biochemie)|kofaktory]] [[Flavinadenindinukleotid|FADH<sub>2</sub>]] a [[pterin]] světlo, čímž dojde k aktivaci enzymu a k rozkladu thyminového dimeru.<ref name="voet" />
Do této skupiny opravných mechanismů patří například [[fotolyáza]], [[enzym]], jenž je schopen opravit chyby způsobené paprsky [[ultrafialové záření|ultrafialového (UV) záření]] (vlnové délky 300 - 500 nm). UV záření je schopné spojit vazbou dvou sousedních [[thymin]]ových bází, čímž vzniká tzv. [[thyminový dimer]] (někdy však podobná situace může vzniknout i s [[cytosin]]em). Fotolyáza se naváže ve tmě na thyminový dimer a poté ve dne absorbují její [[kofaktor (biochemie)|kofaktory]] [[Flavinadenindinukleotid|FADH<sub>2</sub>]] a [[pterin]] světlo, čímž dojde k aktivaci enzymu a k rozkladu thyminového dimeru.<ref name="voet" />
V podstatě se tímto buňka snaží o opačný průběh události poškození, tím že jeden ze tří typů průběhu tohoto narušení chemicky obrátí. Tyto mechanismy nevyžadují předlohu, protože nastalé poškození, které se snaží zvrátit se nachází jen v jedné z bází. Takovéto opravy jsou velmi konkrétní a není u nich tedy, potřeba rozložení [[Fosfodiesterová vazba|fosfodiesterové vazby]]. U lidí probíhají opravy (NER) v reakci na vystavení UV záření.
V podstatě se tímto buňka snaží o opačný průběh události poškození, tím že jeden ze tří typů průběhu tohoto narušení chemicky obrátí. Tyto mechanismy nevyžadují předlohu, protože nastalé poškození, které se snaží zvrátit se nachází jen v jedné z bází. Takovéto opravy jsou velmi konkrétní a není u nich tedy, potřeba rozložení [[Fosfodiesterová vazba|fosfodiesterové vazby]]. U lidí probíhají opravy (NER) v reakci po vystavení vlivu UV záření.
# První poškození je způsobené UV zářením (NER).
# První poškození je způsobené UV zářením (NER).
# Druhým typem je zvrat poškození způsobené metylací báze guaninu, proteinem MGMT.
# Druhým typem je zvrat poškození způsobené metylací báze guaninu, proteinem MGMT.
Řádek 111: Řádek 111:
Velmi nebezpečným příapdem, je když dojde k poškození obou vláken DNA. Takový případ může vést k reorganizaci genomu. V nejhorších případech se jedná o nevrstné poškození z toho důvodu, že ani jedno vlákno nemůže sloužit jako předloha. Buňka následně zemře při příští mitóze, nebo v ojedinělých případech dojde k mutaci. Existují tři mechanismy na opravu obou vláken (DSBs), ty mají zkratky: ('''''NHEJ'''''), ('''''MMEJ''''') a '''''homologní rekombinace'''''. V prostředí in vitro, se u buněk savců obejvil MMEJ na úrovních 10 - 20 % oproti HR, když byly oba mechanismy HR a NHEJ také dostupné.
Velmi nebezpečným příapdem, je když dojde k poškození obou vláken DNA. Takový případ může vést k reorganizaci genomu. V nejhorších případech se jedná o nevrstné poškození z toho důvodu, že ani jedno vlákno nemůže sloužit jako předloha. Buňka následně zemře při příští mitóze, nebo v ojedinělých případech dojde k mutaci. Existují tři mechanismy na opravu obou vláken (DSBs), ty mají zkratky: ('''''NHEJ'''''), ('''''MMEJ''''') a '''''homologní rekombinace'''''. V prostředí in vitro, se u buněk savců obejvil MMEJ na úrovních 10 - 20 % oproti HR, když byly oba mechanismy HR a NHEJ také dostupné.


Při mechanismu s NHEJ se vytvoří komplex z specializované DNA ligázy (DNA ligáza IV) s kofaktorem XRCC4, který se připojí na oba konce. Aby bylo docíleno přesné opravy NHEJ spoléhá na krátké homologního sekvence, mikrohomologního charakteru. Ty jsou přítomné na konečných částech jednoho vlákna DNA, k následnému spojení. Když jsou tyto dva převisy kompatibilní dojde k přesné opravě. Může se během opravy s NHEJ obejvit i mutace. Ztráta poškozených nukleotidů u narušené prostorové konfigurace může vést k odstranění, nebo spojení nekompatibilních konců a vložení nesprávných sekvencí, či translokaci. NHEJ je obzvláště důležitý před tím, než buňka replikovala svou DNA, protože není žádná dostupná předloha pro opravu způsobem HR. U vyšších eukaryot existují i "''záložní''" pochody NHEJ, kromě role pečovatele o genom je NHEJ potřeba pro spojování háčkovitých útvarů během opravy indukované [[V(D)J rekombinace|V(D)J rekombinací]]. Tento proces generuje velmi užitečnou rozmanitost na [[B-buněčný receptor|B-buněčném receptoru]] a [[T-buněčný receptor|T-buněčném receptoru]] v imunitním systému obratlovců.
Při mechanismu s NHEJ se vytvoří komplex z specializované DNA ligázy (DNA ligáza IV) s kofaktorem XRCC4, který se připojí na oba konce. Aby bylo docíleno přesné opravy NHEJ spoléhá na krátké homologního sekvence, mikrohomologního charakteru. Ty jsou přítomné na konečných částech jednoho vlákna DNA, k následnému spojení. Když jsou tyto dva převisy kompatibilní dojde k přesné opravě. Během opravy s NHEJ se může během vyskyznout i mutace. Ztráta poškozených nukleotidů u narušené prostorové konfigurace může vést k odstranění, nebo spojení nekompatibilních konců a vložení nesprávných sekvencí, či translokaci. NHEJ je obzvláště důležitý před tím, než buňka replikovuje svou DNA, protože není žádná dostupná předloha pro opravu způsobem HR. U vyšších eukaryot existují i "''záložní''" pochody NHEJ, kromě role pečovatele o genom je NHEJ potřeba pro spojování háčkovitých útvarů během opravy indukované [[V(D)J rekombinace|V(D)J rekombinací]]. Tento proces generuje velmi užitečnou rozmanitost na [[B-buněčný receptor|B-buněčném receptoru]] a [[T-buněčný receptor|T-buněčném receptoru]] v imunitním systému obratlovců.


=== SOS odpověď ===
=== SOS odpověď ===
Řádek 126: Řádek 126:
* [[Enzym]]
* [[Enzym]]
* [[Bílkovina]]
* [[Bílkovina]]
* [[Crossing-over]]
* [[genetické inženýrství]]
* [[genetické inženýrství]]
* [[genová terapie]]
* [[genová terapie]]

Verze z 10. 4. 2018, 15:59

Porušení celých řetězců DNA na tomto obrázku vyústilo ve vady ve stavbě chromozomů

Oprava DNA je označení pro jakýkoliv mechanismus, který je schopen v poškozeném řetězci DNA obnovit původní pořadí nukleotidů („písmen genetického kódu“ - jednotlivých bází). Takové poškození, které může být způsobené například jednou, nebo několika mutacemi. Nebo také modifikací bází, by jinak mohlo mít za následek poškození genetické informace buňky.[1] Poruchy obecně se projevujíví opravy DNA může mít někdy za následek např. rakovinné bujení. Opravy na DNA uchovávají v pořádku celý genom a nedegradovaný stav jednotlivých genů. U lidských buněk může být poškození způsobeno například vlivem radiace, či i normálními metabolickými procesy. Přes průběh jediného dne je předpokládané množství jednotlivých molekulárních lézí až 1 milión. Mnoho těchto rozkladů může mít za následek i narušení struktury molekul DNA. Porušením může nastat částečné, nebo úplné zamezení schopnosti transkripce segmentů genů ve výsledku degradující celý proces kódování sahající svým rozsahem až i po mechanismy genové exprese. Dalším vysyktujícím nebezpečím jsou nechtěné mutace v genomu buněk (dědičné informaci), následně přenesené ne dceřinné buňky po procesu mitózy. Mechanismy opravující DNA jsou v organismu neustále aktivní, jak reagují na poškození ve struktuře DNA a náhodně se opakujícím chybám. Při selhání mechanismů opravy a nenastaní apoptózy, se mohou vyskytnout nenávratné škody. Například zlomení struktury dvoušroubovie a také vznik komplikovaných křížových vazeb mezi jednotlivými vlákny (crosslinks, ICLs), to může vést až k vytvoření rakovinných těles. Tyto šířící se chyby, následně děděné po buněčných generacích jako jeden ze základů rakovinného bujení je podstatou Knudsonovy hypotézy (two-hit hypothesis).

Míra proběhlých oprav DNA je závislá na mnoha faktorech, typu buňky, stáří samotné buňky, okolního prostředí obklopujícího buňku. Buňka s příliš mnoho opakujícími se narušeními DNA, nebo buňka, která v rámci vnitřních procesů není schopna efektivně aplikovat opravy vyskytnutých chyb, vstoupí do aktivního průběhu jednoho z těchto tří stavů:

  1. Buňka nenávratně dobrovolně vstoupí do pasivního stavu zpomalujícího vnitřní procesy, který může vést k dormanci a neomezená míra zpomalování reakcí vede k senescenci.
  2. Buňka aktivně vstoupí do procesu apoptózy a Programované buněčné smrti (PCD).
  3. Buňka zahájí integrovaný nenávratný neregulovaný proces buněčného dělení , který může vést k růstu tumoru, který je okolními buňkami považován za nebezpečí, okolní buňky neobsahující toto rozsáhlé poškození DNA nedokáží v metabolických procesech s narůstajícím tělesem komunikovat a začlenit jej. Rakovinné bujení následně u nedostatečného zásahu leukocytů gradovaně narůsta.

Průběh buněčné opravy DNA je esenciální při integrujících procesech genomu, tedy zaručuje správné fungování organismu a opakujících se metabolických reakcí. Mnoho genů, s prokázaným vlivem na délku života, ve spolupráci s některými bílkovinami, je zapojených v mechanismech opravy DNA a také její ochrany. Narušená trojrozměrná prostorová konfigurace DNA může být také faktorem tvořícím chybové úkony v průběhu translace při syntéze bílkovin.

V roce 2015 byla Tomasu Lindahlovy, Paul Modrichovy, and Aziz Sancar udělena Nobelova cena za chemii za poodkrytí molekulárních procesů spojencýh s opravou DNA: nejméně dvou konkrétních typů a to oprava za dočasného vyjmutí na nukleotidu a oprava za dočasného vyjmutí na nukleové bázi.

Poškození DNA

K poškozením patří různé genové mutace, chromozomové aberace či dokonce genomové mutace. Výše zmíněná buněčná obměna vede k molekulárním lézím uvnitř buněk v rozsahu 10,000 až jeden milión za den. Nespravované léze u důležitých genů jako jsou tumor supresorové geny, vede k navýšenému riziku výskytu rakoviny. Většina narušení DNA ovlivňuje primární strukturu dvoušroubovice, to znamená upravení samotných bazí chemickými procesy. Tyto modifikace mohou narušit obecnou šroubovitou strukturu, začleňováním cizích chemických vazeb, které nepasují do standartního modelu dvojité šroubovice. DNA obvykle narozdíl od proteinů a RNA postrádá terciální biomolekulární strukturu a s tím spojené vlastnosti, takže se u DNA nevyskytují poškození na této úrovni. DNA má (u eukaryot) specifickou vlastnost se vinout (nadšroubovicové vinutí) a obmotávat kolem nashromážděných skupin bílkovin, nazývaných histony. U eukarytických buněk jsou tyto struktury nazývány nukleozomy, ty samotné jsou také citlivé na poruchy v DNA. Harper dělí poškození DNA následovně:[2]

Proces vyjmutí báze z dvoušroubovice DNA, při aktivování mechanismů opravy DNA.

Zdroje poškození:

Poškození na DNA lze rozdělit na 2 hlavní typy:

  1. Endogenní poškození jako je útok (ROS) reaktivními molekulami s kyslíkem pochazejících z obecných produktů metabolismu (spontánní mutace), především proces oxidativní deaminace (včetně chyb při replikaci).
  2. Exogenní poškození způsobené útoky z vnějšího okolí.
Produkce ROS v mitochondriích u matrix a mezimembránového prostoru.
  • Ultrafialové záření (UV 200 - 400 nm) radiace z Slunce.
  • Ostatní typy radiace (frekvencí), včetně rentgenového záření, gama záření.
  • Hydrolýza, tepelná nerovnováha
  • Některé rostlinné toxiny
  • Chemické látky způsobující mutace, obzvláště aromatické sloučeniny, které se dokáží vměstnant do struktury DNA a tím jí lehce poškozují.
  • Účinky virusu.

Komkrétní typy narušení:

Je několik typů poškození DNA vzhledem k endogenním procesům týkajících se buňky:

Schéma trojrozměrné prostorové konfigurace restriktivního enzymu EcoRV vázajícího se na DNA.
  1. Oxidace bází (8-oxo-7,8-dihydroguanin (8-oxoG)) a narušení generace vláken DNA přerušním reaktivními molekulami s kyslíkem.
  2. Alkylace bází (obvykle metylace) jako je formace 7-metylguanosine, 1-metyladenin, 6-O-Metylguanin.
  3. Hydrolýza bází - depyrimidinace, depurinace, deaminace.
  4. Tzv. "bulky adduct formation"
  5. Překřížení bází, vzhledem k chybám při DNA replikaci. (špatná báze DNA je sešita do nepatřičného místa v nově se formujícím vlákně DNA, nebo je přeskočena báze, chybně vložena do struktury vlákna.
  6. Monoaditivní poškození způsobené změnou jedné dusíkaté báze DNA.
  7. Diaditivní poškození.

Typy poškození exogenními vlivy:

  1. UV - B záření způsobuje křížové spoje mezi přilehlou bází C a T, vytváří pyrimidinový dimer, který patří do přímého poškození DNA.
  2. UV - A záření způsobuje zejména volné radikály, tento způsob je nazýván nepřímé poškození DNA.
  3. Ionizujícího záření (například i z kosmického záření) láme trojrozměnrou prostorovou konfiguraci DNA. Může ve velké míře způsobit i nenávratné škody, které již nelze opravit.
  4. Tepelné narušení, vlivem navýšené teploty zvyšuje míru depurinace. To může vést k přetržení vláken dvoušroubovice. U termofilních bakterií je možno sledovat hydrolitickou depurinaci. Jsou to bakterie, které rostou v horkých pramenech v teplotách 40 - 80°C. Míra depurinace (300 purinových zbytků v genomu jedné generace) je příliš vysoká, tak že nemůže být napravována běžnými mechanismy. Na to se u těchto bakterií vyvijí adaptace odpovídající okolnímu prostředí.
  5. Průmyslové chemikálie s negativním vlivem na dvoušroubovici deoxyribonukleové kyseliny je vinylchlorid, nebo také peroxid vodíku ve velkém množství, způsobující alkylaci bází a neblahé křížové propojování v DNA.

Poškození UV zářením, alkylace/metylace , narušení rentgenovým zářením a oxidativní poškození jsou příklady indukované, kumulativní škody. Spontanní poškození zahrnuje ztrátu báze, deaminaci, svráštěné prstencové formace sacharidů, tautomerní posun.

Oprava DNA během replikace

Replikace DNA, tedy kopírování DNA, které musí předcházet buněčnému dělení, je choulostivý proces, při němž je vysoký potenciál vzniku chyb v genetické informaci vycházejícího vlákna (repliky). To, že je nakonec tato chybovost pouze jedna chyba na miliardu bází (1/109),[3] je zásluhou kontrolních mechanismů během replikace i po ní.

Proofreading

Přímo při replikaci by mohlo docházet k tomu, že se k sobě navážou dvě báze, které nejsou komplementární, tedy adenin k cytosinu a guanin k thyminu. Díky speciálním vlastnostem DNA polymerázy je taková chybovost pouze jedna chyba na deset milionů bází (1/107).[3]

Schopnost samotné DNA polymerázy opravovat špatně přiřazené báze se označuje jako proofreading (doslova „kontrolní čtení“). Jak tento enzym postupuje po řetězci a přidává na základě komplementarity jednotlivé nukleotidy, vždy předtím, než tento nukleotid přiřadí, zkontroluje, že navázání předchozího nukleotidu odpovídá plně zákonům komplementarity (tedy že k A je přiřazeno T, k G je přiřazeno C). Pokud je tam chyba, polymeráza je schopná opět narušit fosfodiesterovou vazbu a vložit na tomto místě nukleotid správný. Můžeme říci, že je DNA polymeráza schopná nejen 5'-3' polymerační aktivity, ale navíc praktikuje i 3'-5' exonukleotické procesy. Proofreading je zřejmě důvod, proč DNA polymeráza kopíruje DNA jen ve směru 5'-3' – jinak by nemohla provádět proofreading.[3]

U bakterií se na opravě DNA různým způsobem podílí hlavně DNA polymeráza I a DNA polymeráza II.[1]

Korekce párování bází

Po ukončení replikace dané části řetězce následuje ještě jedna korekce správného párování bází (tzv. mismatch repair), která dokáže odhalit mnoho chyb zanedbaných komplexem DNA polymerázy. Právě díky ní je výsledná chybovost pouze 1/109.[3] Příkladem chyby je například stav, kdy se naproti guaninu připojí báze adeninová, ačkoliv by tam měl být podle všech pravidel komplementarity cytosin. V tom případě je specializovaná skupina enzymů schopná rozeznat řetězec původní (templátový, ve zmíněném případě ten řetězec s guaninem) od řetězce právě dosyntetizovaného. To je zásadní, jinak by totiž nebylo jasné, jaká z bází (zda guanin nebo adenin) je bodová mutace, a jaký je výchozí stav.[3]

Oprava DNA mimo období replikace

Jednotlivé buňky nemohou správně fungovat při narušené DNA a tím pádem kompromitované integrity a dostupnosti informací genomu (i když buňky mohou být funkční i při poškození, nebo přímo postrádání genů, které nejsou eseciálně důležité). Podle typu poškození ohrožujícího dvoušrobovici DNA, se evolučně vyvinuly opravné mechanismy na rekonstrukci a obnovení ztracených informací. Pokud je to možné, buňky použijí nemodifikované komplementární vlákna DNA, nebo sousední chromatidu jako vzor k napravení škod originální informace. Bez přístupu k předloze, buňky využijí metody náchylné k chybám a to, translační syntézy jako poslední zásobu snahy o nápravu. Jakékoliv poškození DNA, narušuje originální prostorovou konfiguraci vlákna šroubovice, což buňka dokáže detekovat. Jakmile je lokalizováno poškození, konkrétní molekuly na opravu DNA se přichytí v blízkosti místa poškození. Tím napomáhají lokalizovat a přichytit se k místu dalším molekulám. Za probíhajících molekulových interakcí, dohromady vytvoří komplex, který teprve aktivně opravuje poškozené místo v určité prostorové konfiguraci.

Každá učebnice pojímá klasifikaci opravných mechanismů jinak, tento je založen na knize Biochemistry od Donalda a Judith Voetových.[4]

Přímý zvrat poškození

Do této skupiny opravných mechanismů patří například fotolyáza, enzym, jenž je schopen opravit chyby způsobené paprsky ultrafialového (UV) záření (vlnové délky 300 - 500 nm). UV záření je schopné spojit vazbou dvou sousedních thyminových bází, čímž vzniká tzv. thyminový dimer (někdy však podobná situace může vzniknout i s cytosinem). Fotolyáza se naváže ve tmě na thyminový dimer a poté ve dne absorbují její kofaktory FADH2 a pterin světlo, čímž dojde k aktivaci enzymu a k rozkladu thyminového dimeru.[4] V podstatě se tímto buňka snaží o opačný průběh události poškození, tím že jeden ze tří typů průběhu tohoto narušení chemicky obrátí. Tyto mechanismy nevyžadují předlohu, protože nastalé poškození, které se snaží zvrátit se nachází jen v jedné z bází. Takovéto opravy jsou velmi konkrétní a není u nich tedy, potřeba rozložení fosfodiesterové vazby. U lidí probíhají opravy (NER) v reakci po vystavení vlivu UV záření.

  1. První poškození je způsobené UV zářením (NER).
  2. Druhým typem je zvrat poškození způsobené metylací báze guaninu, proteinem MGMT.
  3. Třetím typem zvratu v buňce určitého poškození DNA, které je způsobené konkrétní metylací báze cytosinu a adeninu

Opravy jiných typů poškození DNA je schopná také 06-methyl-guanin-DNA-methyltransferáza. Tento protein je schopen opravit báze 06-methylguanin a 06-ethylguanin, které vznikají alkylací guaninu např. po jeho vystavení alkylačním činidlům, jako je MNNG.[4]

Vyštěpovací oprava

Uracil-N-glykosyláza; uracil je vyznačen žlutě

Vyštěpovací či také ekcizní typ oprav (z angl. excision repair) představuje další možnost, jak opravit poškození ultrafialovým světlem. V tomto případě je pomocí speciálních enzymů (jistých endonukleáz; konkrétně UvrABC–endonukleázou) vyštěpen z molekuly DNA oligonukleotid (jednovláknový řetězec dlouhý několik nukleotidů) obsahující pyrimidinové dimery (cytosinové či thyminové). Následně jsou (u bakterií zřejmě DNA polymerázou I) syntetizovány předtím odstraněné nukleotidy. Poruchy v těchto ekcizních mechanismech mohou vést k onemocnění xeroderma pigmentosum.[4]

Jindy se díky vyštěpování mohou v DNA opravovat chyby vzniklé např. samovolnou deaminací (adeninu na hypoxantin či cytosinu na uracil), methylací či samovolné otevření cyklických molekul nukleových bází. Tzv. DNA glykosylázy jsou ve spolupráci s AP endonukleázou a DNA polymerázami schopné tento typ chyb opravit. Příkladem je uracil-N-glykosyláza, která z DNA odstraňuje uracilové báze, které do DNA vůbec nepatří, a nahrazuje je cytosinem.[4]

Rekombinační oprava

DNA ligáza je enzym, který dokáže spojit narušené nukleotidy dohromady jako katalyzátor internukleotidu, (fosfodiesterové vazby) vazby mezi nukleotidy deoxyribózy a fosfátovou páteří. Vyobrazení je DNA ligáza opravující poškození na chromozomech a blíže, tedy samotné deoxyribonukleové kyseliny.
Schéma DNA ligázy z PDB.

Rekombinační (protože připomíná rekombinaci) nebo také postreplikační typ oprav spočívá v tom, že pyrimidinové dimery vzniklé účinkem UV záření, jako je dimer thyminový, působí vážné potíže při replikaci DNA. Pokud DNA polymeráza replikující genom dojde na místo, kde je např. thyminový dimer, přeruší zde polymeraci a toto místo přeskočí. Taková mezera však musí být zacelena, a to nejlépe podle vzoru v podobě druhého rodičovského vlákna, které již mezi tím bylo replikováno. U E. coli toto zajišťuje nukleáza RecA, která vystřihne odpovídající část DNA z rodičovského vlákna a přesune ho na druhou část replikační vidlice, kde se řetězec zabuduje do dceřiného vlákna.[4]

Velmi nebezpečným příapdem, je když dojde k poškození obou vláken DNA. Takový případ může vést k reorganizaci genomu. V nejhorších případech se jedná o nevrstné poškození z toho důvodu, že ani jedno vlákno nemůže sloužit jako předloha. Buňka následně zemře při příští mitóze, nebo v ojedinělých případech dojde k mutaci. Existují tři mechanismy na opravu obou vláken (DSBs), ty mají zkratky: (NHEJ), (MMEJ) a homologní rekombinace. V prostředí in vitro, se u buněk savců obejvil MMEJ na úrovních 10 - 20 % oproti HR, když byly oba mechanismy HR a NHEJ také dostupné.

Při mechanismu s NHEJ se vytvoří komplex z specializované DNA ligázy (DNA ligáza IV) s kofaktorem XRCC4, který se připojí na oba konce. Aby bylo docíleno přesné opravy NHEJ spoléhá na krátké homologního sekvence, mikrohomologního charakteru. Ty jsou přítomné na konečných částech jednoho vlákna DNA, k následnému spojení. Když jsou tyto dva převisy kompatibilní dojde k přesné opravě. Během opravy s NHEJ se může během vyskyznout i mutace. Ztráta poškozených nukleotidů u narušené prostorové konfigurace může vést k odstranění, nebo spojení nekompatibilních konců a vložení nesprávných sekvencí, či translokaci. NHEJ je obzvláště důležitý před tím, než buňka replikovuje svou DNA, protože není žádná dostupná předloha pro opravu způsobem HR. U vyšších eukaryot existují i "záložní" pochody NHEJ, kromě role pečovatele o genom je NHEJ potřeba pro spojování háčkovitých útvarů během opravy indukované V(D)J rekombinací. Tento proces generuje velmi užitečnou rozmanitost na B-buněčném receptoru a T-buněčném receptoru v imunitním systému obratlovců.

SOS odpověď

U bakteriálních buněk, různými způsoby silně poškozených, dojde k utlumení dělení a místo toho se posílí opravné mechanismy. Nukleáza RecA v tom případě aktivuje celou řadu proteinů podílejících se na SOS odpovědi. Jedná se však o značně nedokonalý proces, který slouží jako „poslední záchrana“, neboť při tomto procesu dochází k četným chybám.[4]

DNA oprava a rakovina

Související články

Reference

  1. a b ROBERT C. KING; WILLIAM D. STANSFIELD; PAMELA K. MULLIGAN. A Dictionary of Genetics, Seventh Edition. [s.l.]: Oxford University Press, 2006. 
  2. Robert K. Murray; Daryl K. Granner; Joe C. Davis; Peter A. Mayes; Victor W. Rodwell. Harper’s Illustrated Biochemistry; twenty-sixth edition. [s.l.]: [s.n.], 2003. ISBN 0-07-138901-6. 
  3. a b c d e ALBERTS, Bruce, et al. Essential Cell Biology. 2. vyd. New York: Garland Science, 2004. 
  4. a b c d e f g VOET, Donald; VOET, Judith. Biochemie. 1.. vyd. Praha: Victoria Publishing, 1995. ISBN 80-85605-44-9.