Návrh léčiv

Z Wikipedie, otevřené encyklopedie
Skočit na navigaci Skočit na vyhledávání

Návrh léčiv (anglicky Drug design) přesněji označený jako racionální návrh léčiv je proces hledání nových léčiv založený na znalosti biologických cílů. Léčivo je nejčastěji malá organická molekula která aktivuje, nebo inhibuje funkce biomolekul jako jsou například proteiny což vede k terapeutickému prospěchu pacienta. V nejběžnějším případě návrh léčiv zahrnuje návrh molekul které jsou komplementární svým tvarem a nábojem ke biomolekule na kterou cílí a váží se na ni. Návrh léčiv často, ale ne nezbytně závisí na technikách počítačového modelování Drug design který je závislý na 3D struktuře cílené biomolekuly se nazývá návrh léčiva na základě známé struktury vazebného místa. Kromě malých organických molekul vzrůstá důležitost vývoje biofarmak na bázi peptidů a terapeutických protilátek a s tím četnost používání výpočetních metod pro zlepšení afinity, selektivity a stability.

Fráze „návrh léčiv“ je do jisté míry nepřesný pojem. Přesnějším termínem by byl návrh ligandu (tzn. návrh molekuly, která se bude pevně vázat na svůj cíl). I přesto, že jsou techniky návrhu designu pro předpověď vazebné afinity vcelku úspěšné, důležitou roli hraje také mnoho jiných důležitých vlastnosti vlastnosti jako biodostupnost, biologický poločas, vedlejší efekty atd. Tyto parametry se předně musí optimalizovat před tím, než se lék stane bezpečným a účinným. Zmíněné další vlastnosti je často obtížné předpovídat výpočetními technikami návrhu léčiv. Kvůli vysokému procentu vyřazených léčiv v klinické fázi testování se začíná klást důraz na počáteční proces návrhu a selekci léčiv jejichž fyzikálně-chemické vlastnosti jsou předpovězeny jako méně problematické pro vývoj léku a povedou tak pravděpodobněji ke schválení a prodeji. Dále se výpočetních metod čím dál více využívá jako doplněk pro In vitro experimenty v prvopočátcích objevu léčiv pro selekci sloučenin s více příznivým ADME (absorpce, distribuce, metabolismus, exkrece).

Historie vývoje léčiv[editovat | editovat zdroj]

První izolovanou chemickou látkou s prokázanými léčivými účinky (úleva od bolesti) byl morfin, který byl získán roku 1806 z makovic. To odstartovalo řadu získaných léčivých extraktů z rostlin. Rozmach objevu nových léčiv nastal v průběhu 60. let 20. století s tím, jak se zlepšovaly metody testování potenciálních nových léčiv. Důraz byl kladen především na bezpečnost léčby.

Na otázku, kde dnes hledat nová léčiva, není jednoduchá odpověď. V minulosti byla nová léčiva vyhledávána v přírodě, dnes se nabízí semisyntetický přístup, neboli chemická modifikace získané přírodní sloučeniny, popř. syntetické látky mimikující přírodní látky, nebo syntéza látek s farmakoforem, který byl odvozen od přírodních látek. Poslední variantou je plně syntetická cesta.

Jednoznačný návrh léčiva je nicméně obtížný. Je třeba znát cíl léčiva, brát v úvahu metabolizaci léčiva a jeho potenciální vedlejší účinky. Zároveň se jedná o velmi nákladný proces (cca 2 mld. USD). Velkou část této sumy je využita na realizaci biologických a klinických testů, které můžou trvat několik let a výsledkem může být, že žádná z kandidátních látek testami neprojde, co znamená obrovské mrhání zdroji a financí. Proto in silico metody znamenají značné zlevnění, zrychlení a usnadnění celého procesu. Fyzicky jsou dnes mnohé potenciální léčiva testovány pomocí High Throughput Screeningu (HTS). Ze in silico metod se zde nabízí dokování, které do jisté míry může nahradit kvantum biologických testů, a tedy i ušetřit prostředky.

Léčivo[editovat | editovat zdroj]

Molekula, která je současně i léčivem, musí splňovat několik kritérií. Je potřebné, aby byla molekula dostatečně účinná (kvalitativní vlastnost), co znamená, že v organismu dosáhne daný terapeutický efekt. Další potřebnou vlastností je bioaktivita (kvantitativní vlastnost), pod kterou rozumíme množství látky potřebné k dosáhnutí žádaného terapeutického efektu. Je samozřejmé, že z hlediska toxicity je vhodné, aby množství potřebné látky bylo co nejnižší. Hodnotí se také biodostupnost, co znamená, že látka je po uvedení do organismu schopná dostat se k určenému biologickému cíli. Biodostupnost můžeme ovlivnit samotným charakterem molekuly, tedy už při samotném drug designu. Dále je vhodné, aby byla molekula:

- netoxická

- chemicky a metabolicky stabilní

- rozpustná

Všechny tyto faktory víme predikovat v rámci racionálního drug designu, a to posuzováním tzv. „drug-likeness“ molekul (míra, jak velmi jsou látky podobné již s existujícími léčivami s prokázanými vlastnostmi). Můžeme tak učinit na základě některých parametrů a využít například Lipinského pravidlo pěti, Opreovi pravidla, vybrat často se vyskytující strukturní motivy, časté funkční skupiny nebo naopak, vyloučit látky s nezajímavými funkčními skupinami (např. estery, které se lehce degradují esterázami a proteázami), můžeme využít i skórovací funkce.

Důležitost predikování vlastností léčiva (ligandu biologického cíle) tkví ve faktu, že molekuly, které jsou navržené pouze na základě znalostí struktury daného cíle, prokázaly v dalších testech vážné vedlejší účinky. Mohou tedy pomoct ve výběru kandidátních molekul.

Stále aktuální metodou hledání nových léčiv je však nadále historická metoda objevu léčivých látek pokus-omyl, co znamená syntéza látek podrobených biologickým testům na buněčných kulturách nebo na zvířatech, na základě kterých může být látka přesunuta do dalších fází testování (klinické zkoušky), i těch navrhnutých drug designem, protože ve výpočetních metodách jsou v současnosti ještě mnohé omezení a nelze úplně predikovat celkové chování léčiva v organismu.

Cíle léčiva[editovat | editovat zdroj]

Biomolekulární cíl (nejčastěji bílkovina nebo nukleová kyselina) je klíčová molekula zahrnutá do konkrétní metabolické, nebo signální dráhy spojené s konkrétní nemocí, patologickým stavem, infekcí, mikrobiálním patogenem. Potencionální cíle léčiva není nutně příčina vzniku nemoci, ale cílem může být modifikace nemoci. V některých případech se léčivo v podobě malých molekul navrhuje tak aby podpořilo, nebo inhibovalo funkci specifické dráhy pro danou nemoc. Malé molekuly (receptorový agonista, antagonista, inverzní agonista, modulátory, aktivátory a inhibitory enzymů, blokátory a otvírače iontových kanálů) jsou navrhovány tak, aby byly komplementární k vazebnému místu cílené molekuly. Při navrhování nízkomolekulárních léčiv je snaha vyvinou léčivo tak aby působilo jen na jedno konkrétní místo, současně tedy předpokládáme, že biologický cíl je „druggable“ (navázáním malé molekuly se mohou měnit jeho vlastnosti). V opačném případě může podání léčiva způsobovat nežádoucí vedlejší efekty. Molekuly s podobnými vazebnými místy, nebo podobné skrze sekvenční homologii mají největší šanci ke zkřížené reaktivitě a je u nich zvýšená šance k vedlejším efektům.

Léčivem jsou nejčastěji malé organické molekuly produkované chemickou syntézou, modifikací organických sloučenin tvořených organismy. Také se zvyšuje množství léčiv vyprodukovaných čistě biologickým procesem.

Typy[editovat | editovat zdroj]

Využívají se dva základní přístupy k návrhu léčiv. První je návrh léčiva na základě ligandu (ligand-based drug design) a druhý návrh léčiva na základě struktury (structure-based drug design).

Návrh léčiva na základě struktury ligandu[editovat | editovat zdroj]

Je to nepřímý návrh léčiva. Tento způsob závisí na znalosti jiných molekul, které se váží na cíl, který nás zajímá. Tyto další molekuly mohou být použiti k odvození farmakoforového modelu, který definuje minimální strukturní podobnost k tomu, aby se molekula vázala na cíl. Jinými slovy, model biologického cíle může být postaven na znalosti toho, co se na něj váže a tento model může být zpětně použit k návrhu molekul které se na cíl budou vázat také.

Alternativou může být Modely kvantitativní závislosti aktivity na struktuře (QSAR). Ty využívají korelace mezi vypočítanými vlastnostmi molekul a jejich experimentálně stanovenou biologickou aktivitou. Data získaná touto metodou metodou mohou být zpětně použita pro předpověď aktivity nových analogů.

Návrh léčiva na základě struktury cíle[editovat | editovat zdroj]

Je to přímý návrh léčiva. Tento způsob závisí na znalosti 3D struktury biologického cíle. Prostorová struktura cíle se nejčastěji získává analytickými metodami jako je Rentgenová krystalografie a Spektroskopie nukleární magnetické rezonance. Pokud cílová struktura není dostupná, je možné vytvořit homologický model cíle na základě struktury příbuzného proteinu. Za použití struktury biologického cíle se modelují potencionální léčiva u kterých se předpokládá vysoká afinita a selektivita k cíli. To za pomocí programů s grafickým rozhraním k tomu určeným a předpoklady medicinální chemie.

Současné metody se dají rozdělit do tří kategorií. První metoda je založená na identifikaci nových ligandů pro vybraný receptor pomocí prohledávání rozsáhlých databází 3D nízkomolekulárních látek s cílem najít takové, které by seděli do vazebného místa receptoru. Toto se provádí pomocí dokovacích programů a metoda je označována jako virtuální screening. Druhá metoda je de novo návrh nového ligandu. Tímto postupem se ligand vytváří na vazebném místě postupně sestavováním po malých kouscích. Tyto kousky mohou být jak jednotlivé atomy, tak fragmenty molekul. Hlavní výhoda této metody je tvorba zcela nových molekul, které neobsahuje žádná databáze. Třetí metodou je optimalizace známých ligandů hodnocením navržených analogů ve vazebném místě.

Literatura[editovat | editovat zdroj]

  • Madsen U, Krogsgaard-Larsen P, Liljefors T (2002). Textbook of Drug Design and Discovery. Washington, DC: Taylor & Francis. ISBN 978-0-415-28288-8.
  • Ghasemi, Pérez-Sánchez; Mehri, fassihi (2016). "The Role of Different Sampling Methods in Improving Biological Activity Prediction Using Deep Belief Network". Journal of Computational Chemistry. 38 (10): 1–8.
  • Reynolds CH, Merz KM, Ringe D, eds. (2010). Drug Design: Structure- and Ligand-Based Approaches (1 ed.). Cambridge, UK: Cambridge University Press. ISBN 978-0521887236.
  • Fosgerau, Keld; Hoffmann, Torsten (2015-01-01). "Peptide therapeutics: current status and future directions". Drug Discovery Today. 20 (1): 122–128.
  • Ciemny, Maciej; Kurcinski, Mateusz; Kamel, Karol; Kolinski, Andrzej; Alam, Nawsad; Schueler-Furman, Ora; Kmiecik, Sebastian (2018-05-04). "Protein–peptide docking: opportunities and challenges". Drug Discovery Today. 23 (8): 1530–1537. ISSN 1359-6446. PMID 29733895
  • Shirai H, Prades C, Vita R, Marcatili P, Popovic B, Xu J, Overington JP, Hirayama K, Soga S, Tsunoyama K, Clark D, Lefranc MP, Ikeda K (Nov 2014). "Antibody informatics for drug discovery". Biochimica et Biophysica Acta. 1844 (11): 2002–2015.
  • Tollenaere JP (Apr 1996). "The role of structure-based ligand design and molecular modelling in drug discovery". Pharmacy World & Science. 18 (2): 56–62.
  • Waring MJ, Arrowsmith J, Leach AR, Leeson PD, Mandrell S, Owen RM, Pairaudeau G, Pennie WD, Pickett SD, Wang J, Wallace O, Weir A (2015). "An analysis of the attrition of drug candidates from four major pharmaceutical companies". Nature Reviews Drug Discovery. 14 (7): 475–86.
  • Yu H, Adedoyin A (Sep 2003). "ADME-Tox in drug discovery: integration of experimental and computational technologies". Drug Discovery Today. 8 (18): 852–61.
  • Dixon SJ, Stockwell BR (Dec 2009). "Identifying druggable disease-modifying gene products". Current Opinion in Chemical Biology. 13 (5–6): 549–55.
  • Imming P, Sinning C, Meyer A (Oct 2006). "Drugs, their targets and the nature and number of drug targets". Nature Reviews. Drug Discovery. 5 (10): 821–34.
  • Anderson AC (Sep 2003). "The process of structure-based drug design". Chemistry & Biology. 10 (9): 787–97. DOI:10.1016/j.chembiol.2003.09.002.
  • Recanatini M, Bottegoni G, Cavalli A (Dec 2004). "In silico antitarget screening". Drug Discovery Today: Technologies. 1 (3): 209–15.
  • Wu-Pong S, Rojanasakul Y (2008). Biopharmaceutical drug design and development (2nd ed.). Totowa, NJ Humana Press: Humana Press. ISBN 978-1-59745-532-9.
  • Scomparin A, Polyak D, Krivitsky A, Satchi-Fainaro R (Apr 2015). "Achieving successful delivery of oligonucleotides - From physico-chemical characterization to in vivo evaluation". Biotechnology Advances. 33 (6): 1294–309.
  • Guner OF (2000). Pharmacophore Perception, Development, and use in Drug Design. La Jolla, Calif: International University Line. ISBN 978-0-9636817-6-8.
  • Tropsha A (2010). "QSAR in Drug Discovery". In Reynolds CH, Merz KM, Ringe D (eds.). Drug Design: Structure- and Ligand-Based Approaches (1 ed.). Cambridge, UK: Cambridge University Press. pp. 151–164. ISBN 978-0521887236.
  • Mauser H, Guba W (May 2008). "Recent developments in de novo design and scaffold hopping". Current Opinion in Drug Discovery & Development. 11 (3): 365–74.
  • Klebe G (2000). "Recent developments in structure-based drug design". Journal of Molecular Medicine. 78 (5): 269–81.
  • Wang R, Gao Y, Lai L (2000). "LigBuilder: A Multi-Purpose Program for Structure-Based Drug Design". Journal of Molecular Modeling. 6 (7–8): 498–516.
  • Schneider G, Fechner U (Aug 2005). "Computer-based de novo design of drug-like molecules". Nature Reviews. Drug Discovery. 4 (8): 649–63.
  • Jorgensen WL (Mar 2004). "The many roles of computation in drug discovery". Science. 303 (5665): 1813–8.
  • Leis S, Schneider S, Zacharias M (2010). "In silico prediction of binding sites on proteins". Current Medicinal Chemistry. 17 (15): 1550–62.
  • Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 1997, 23 (1–3), 3–25.
  • Oprea, T. I. Property Distribution of Drug-Related Chemical Databases. J. Comput. Aided. Mol. Des. 2000, 14 (3), 251–264. https://doi.org/10.1023/A:1008130001697.
  • (1) Mandal, S.; Moudgil, M.; Mandal, S. K. Rational Drug Design. Eur. J. Pharmacol. 2009, 625 (1), 90–100.

Externí odkazy[editovat | editovat zdroj]