Intenzita elektrického pole

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání

Intenzita elektrického pole (též elektrická intenzita) je vektorová fyzikální veličina, vyjadřující velikost a směr elektrického pole. Je definována jako elektrická síla působící na těleso s kladným jednotkovým elektrickým nábojem.

Značení a jednotky[editovat | editovat zdroj]

Definice[editovat | editovat zdroj]

Intenzita elektrického pole působícího na elektrický náboj q je definována vztahem

\mathbf{E} = \frac{\mathbf{F}}{q},

kde F je elektrická síla působící na náboj q.
Hodnota vektoru intenzity elektrického pole obecně závisí na poloze v prostoru (je funkcí polohového vektoru), proto je tato veličina vektorové pole.

Elektrické pole se dělí na elektrostatické, které je vytvářeno nepohyblivým el. nábojem a na elektrodynamické, které vytváří pohybující se el. náboj, jak přímo, tak prostřednictvím proměnlivého magnetického pole.

Intenzita elektrického pole působící na elektrický náboj q kolem vodiče je definována vztahem

\mathbf{E} = \frac{\mathbf{U}}{l}

Kde U je napětí zdroje na délku vodiče l

Elektrostatické pole[editovat | editovat zdroj]

Základní vztahy[editovat | editovat zdroj]

Podle Coulombova zákona lze v bodě \mathbf{r} v okolí bodového náboje Q umístěného v počátku soustavy souřadnic vyjádřit intenzitu elektrického pole vztahem

\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\varepsilon}\frac{Q}{r^2}\frac{\mathbf{r}}{r},

kde \varepsilon je permitivita prostředí elektrického pole,  \mathbf{r} je polohový vektor určující polohu daného bodu a r=|\mathbf{r}| jeho délka. Jejich podíl je jednotkovým vektorem, který určuje směr. Po jeho odstranění zůstane vzorec pro velikost intenzity elektrického pole v okolí bodového náboje Q ve vzdálenosti r:

E = \frac {1}{4 \pi \varepsilon} \frac {Q}{r^2}.

Oba výše uvedené uvedené vztahy platí za předpokladu, že prostředí v němž určujeme intenzitu pole je vakuum nebo homogenní lineární dielektrikum.

Směr vektoru elektrické intenzity E je dán směrem působící elektrické síly. Orientace elektrické intenzity je dána domluvou, že zkušebním tělesem je kladně nabité těleso, a tedy elektrická intenzita směřuje od tělesa s kladným elektrickým nábojem k tělesu se záporným elektrickým nábojem.

V obecném případě, kdy bodový náboj vytvářejí elektrické pole není umístěn v počátku soustavy souřadnic, ale v poloze \mathbf{r}^\prime, se poloha bodu v němž určujeme intenzitu pole vyjadřuje relativně k \mathbf{r}^\prime, což vyjadřuje vektorový rozdíl \mathbf{r}-\mathbf{r}^\prime, kterým se nahradí vektor \mathbf{r}. Výsledný vztah je

\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\varepsilon} \frac{Q}{{|\mathbf{r}-\mathbf{r}^\prime|}^3} (\mathbf{r}-\mathbf{r}^\prime).

Intenzitu elektrostatického pole lze také určit z elektrického potenciálu prostřednictvím vztahu

\mathbf{E}(\mathbf{r}) = -\operatorname{grad}\varphi(\mathbf{r}) = -\nabla\varphi(\mathbf{r}),

kde \varphi je potenciál elektrického pole a \operatorname{grad} označuje operátor gradientu.

Nechá-li se vektor elektrické intenzity procházet uzavřenou, vně orientovanou plochou (Gaussova plocha), jedná se o veličinu tok elektrické intenzity, která je úměrná náboji uvnitř. Tato skutečnost je vyjádřena Gaussovým zákonem elektrostatiky:

\oint_S{\mathbf{E}\cdot\mathrm{d}\mathbf{S}} = \frac{Q}{\varepsilon}.

Pro intenzitu elektrického pole platí princip superpozice, tzn., že celková intenzita el. pole vytvářená více zdroji je rovna součtu intenzit el. pole těchto dílčích zdrojů.

Výpočet[editovat | editovat zdroj]

Ze základních vztahů lze odvodit vzorce pro intenzitu elektrického pole vytvářeného různým rozložením el. náboje v prostoru. Následující vztahy platí za předpokladu, že prostředí v němž určujeme intenzitu pole je vakuum nebo homogenní lineární dielektrikum.

Pro intenzitu el. pole n bodových nábojů Q_i nacházejících se v pozicích \mathbf{r}_i platí, že

\mathbf{E}(\mathbf{r}) = \sum_{i=1}^n \mathbf{E}_i(\mathbf{r}) = \frac{1}{4\pi\varepsilon} \sum_{i=1}^n \frac{Q_i}{{|\mathbf{r}-\mathbf{r}_i|}^3} (\mathbf{r}-\mathbf{r}_i),

Intenzitu el. pole vytvářeného el. nábojem spojitě rozloženým v objemu V lze vyjádřit vztahem

\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\varepsilon} \int_V \frac{\rho(\mathbf{r}^\prime)}{{|\mathbf{r}-\mathbf{r}^\prime|}^3}(\mathbf{r}-\mathbf{r}^\prime)\mathrm{d}V,

kde \rho je objemová hustota elektrického náboje a \mathbf{r}^\prime označuje proměnnou, která při integrování prochází přes objem V.

Intenzitu el. pole vytvářeného el. nábojem spojitě rozloženým na ploše S lze vyjádřit vztahem

\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\varepsilon} \int_S \frac{\sigma(\mathbf{r}^\prime)}{{|\mathbf{r}-\mathbf{r}^\prime|}^3}(\mathbf{r}-\mathbf{r}^\prime)\mathrm{d}S,

kde \sigma je plošná hustota elektrického náboje a \mathbf{r}^\prime označuje proměnnou, která při integrování prochází přes plochou S.

Intenzitu el. pole vytvářeného el. nábojem spojitě rozloženým po křivce l lze vyjádřit vztahem

\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\varepsilon} \int_l \frac{\tau(\mathbf{r}^\prime)}{{|\mathbf{r}-\mathbf{r}^\prime|}^3}(\mathbf{r}-\mathbf{r}^\prime)\mathrm{d}l,

kde \tau je lineární hustota elektrického náboje a \mathbf{r}^\prime označuje proměnnou, která při integrování prochází přes křivku l.

Elektrodynamické pole[editovat | editovat zdroj]

Elektrodynamické pole vytváří pohybující se el. náboj. Pokud dochází ke změně elektrické intenzity v čase má to následek vznik magnetického pole, rovněž tak změna magnetického pole má za následek vznik elektrického pole, což popisuje obecná teorie elektromagnetického pole, popsaná Maxwellovými rovnicemi. Tyto rovnice tedy popisují také elektrostatické pole. Maxwellovy rovnice jsou platné pouze na makroskopické úrovni tj. pokud rozměry popisovaných oblastí jsou podstatně větší než rozměry atomů. Speciálním případem elektromagnetického pole je pole vytvářené konstantním elektrickým proudem (podmíněný konstantním el. polem), který vytváří konstantní magnetické pole.

Elektromagnetismus zahrnuje jevy jako např. elektromagnetická indukce nebo elektromagnetické záření.

Vlastnosti[editovat | editovat zdroj]

Intenzita elektrického pole se graficky zobrazuje pomocí siločar. Jejich hustota na jednotku plochy, kterou protínají je úměrná velikosti intenzity elektrického pole.

Související články[editovat | editovat zdroj]

Literatura[editovat | editovat zdroj]

  • SEDLÁK, Bedřich; ŠTOLL, Ivan. Elektřina a magnetismus. [s.l.] : Academia. 650 s. ISBN 80-200-1004-1.