Wienerův proces

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání

Wienerův process je stochastický proces spojitého času pojmenovaný na počest Norberta Wienera. Někdy je nazýván brownův pohyb podle Roberta Browna. Je to jeden z nejlépe známých Lévyho procesů (to je stochastických procesů s přírůstky nezávislými na poloze) a lze ho četně najít v čisté i užité matematice, ekonomii a fyzice.

Wienerův proces Wt je takový že splňuje následující.

  1. W0 = 0
  2. Wt je téměř jistě spojitý
  3. Wt má na poloze nezávislé přírůstky s rozdělením W_t-W_s\sim \mathcal{N}(0,t-s) (pro 0 ≤ s < t).

(„N(μ, σ2)“ značí normální rozdělení s očekávanou hodnotou μ a rozptylem σ². Podmínka na poloze nezávislých přírůstků znamená, že pokud 0 ≤ s1t1s2t2 pak W_{t_1}-W_{s_1} a W_{t_2}-W_{s_2} jsou nezávislé náhodné proměnné.