Thaletova věta

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání
Thaletova věta.

Thaletova věta je matematická věta o velikosti úhlů trojúhelníků vytvořených nad průměrem kružnice. Je pojmenována po Thalétovi z Milétu, který ji jako první dokázal.

Kružnice, která je součástí konstrukce Thaletovy věty, bývá označována jako Thaletova kružnice.

Znění[editovat | editovat zdroj]

Všechny obvodové úhly sestrojené nad průměrem kružnice jsou pravé.

Jiné znění: Všechny trojúhelníky, jejichž střed kružnice opsané půlí nejdelší stranu, jsou pravoúhlé.

Nebo jinak: Sestrojme libovolnou kružnici s průměrem. Koncové body jejího průměru označíme A a B a zvolíme libovolný bod C na kružnici. Pak platí, že trojúhelník ABC je pravoúhlý a má pravý úhel u vrcholu C.

Původní znění[zdroj?]: "Středový úhel je dvojnásobek obvodového" Z toho vyplývají předešlá znění. (Při středovém úhlu 180° - přímka je obvodový úhel pravý - 90°)

Důkaz[editovat | editovat zdroj]

Podívejte se na obrázek, na kterém je příklad úhlu sestrojeného nad průměrem kružnice. Protože trojúhelníky CSB a ASC jsou rovnoramenné (vždy dvě jejich ramena jsou dlouhá r), tak úhel ∠BCA má velikost α+β. Součet úhlů v trojúhelníku ABC je pak

α + β + α + β = 2 α + 2 β = 180°.

Z toho pak snadno vyjádříme, že úhel

∠BCA = α + β = 90°.

Zobecnění[editovat | editovat zdroj]

Zobecnění Thaletovy věty.

Thaletova věta je zvláštní případ věty: Jestliže máme tři body A, B a C na kružnici se středem S, potom úhel ∠ASC je dvakrát tak velký jako úhel ∠ABC.

Historie[editovat | editovat zdroj]

Thalés z Milétu nebyl první, kdo tuto větu vyslovil. Byla známá již Egypťanům a Babyloňanům, ačkoli ti ji znali jen ze zkušenosti, nedokázali ji. To udělal až Thalés, který využil znalostí toho, že úhly při základně rovnoramenného trojúhelníku mají stejnou velikost a součet úhlů v trojúhelníku je roven dvěma pravým úhlům.

Související články[editovat | editovat zdroj]