MHC glykoprotein II. třídy

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání
Schéma MHC glykoproteinu II. třídy

MHC glykoproteiny II. třídy (MHCII) jsou povrchové glykoproteiny bílých krvinek, uplatňující se při zahájení specifické imunitní reakce. Hlavní funkcí molekul MHCII je prezentovat T-lymfocytu exogenní peptid, odvozený od pohlceného antigenu, tím T-lymfocyt aktivovat, a spustit tedy imunitní odpověď proti tomuto antigenu.

Genová exprese MHCII[editovat | editovat zdroj]

MHC glykoproteiny II. třídy jsou exprimovány především profesionálními antigen prezentujícími buňkami (APC), mezi které patří dendritické buňky, makrofágy a B-lymfocyty. Inducibilně mohou MHCII exprimovat neprofesionální APC, např. buňky endotelové, epitelové, nádorové a T-lymfocyty. Geny kódující MHC glykoproteiny II. třídy se nachází v hlavním histokompatibilním komplexu, který se u lidí nachází na VI. a u myší na XVII. chromosomu. Lidé exprimují tři izotypy MHCII (HLA-DP, HLA-DQ a HLA-DR), zatímco myši pouze dva (I-A a I-E).

Struktura[editovat | editovat zdroj]

MHCII se skládá ze dvou řetězců, α a β. Na rozdíl od podjednotek MHC I, oba jsou přibližně stejně velké, okolo 30 kDa. Oba dva jsou také zakotveny v membráně a spolu vytvářejí vazebné místo pro peptid, jenž prezentují.Toto MHC II dokáží vázat peptid obvykle o délce 15-35 animokyselin, ale i delší, což je podstatně více, než u MHCI. To je dáno tím, že žlábek, do nějž se peptid váže, není na koncích uzavřený, ale otevřený, takže peptid může na koncích přesahovat ven.[1] Samotná vazba peptidu se odehrává na srovnatelné délce peptidu.

Antigenní prezentace[editovat | editovat zdroj]

Na molekulách MHCII jsou prezentovány hlavně peptidy exogenního původu. Antigeny, ze kterých tyto peptidy vznikají, jsou endocytovány a na MHCII se váží v buňce. Mezi mechanizmy endocytózy, využívané antigen prezentujícími buňkami, patří fagocytóza, makropinocytóza, endocytóza zprostředkovaná receptorem a endocytóza závislá na klathrinu nebo kaveolinu. Endocytovaný antigen je transportován do specializovaných pozdních endozómů, zvaných také MIIC kompartmenty (MHCII rich compartments). Sem také z Golgiho aparátu přichází MHCII molekuly v komplexu s dalším transmembránovým proteinem, zvaným invariantní řetězec (Ii), který se na ně navázal už v endoplasmatickém retikulu. Funkcí Ii je bránit navázání endogenních peptidů na MHCII během jeho cesty sekretorickou drahou. V MIIC kompartmentu jsou pohlcený antigen a Ii proteolyticky štěpeny a zbytek Ii na MHCII je za pomoci proteinu HLA-DM vyměněn za peptidový fragment, pocházející z antigenu. Komplex peptid-MHCII je následně transportován na povrch buňky, kde je antigen prezentován na TH lymfocytu. Na MHCII mohou být však kromě exogenních peptidů vystavovány i peptidy endogenního původu. Může se jednat o peptidy, pocházející z proteinů rezidentních v endozomálním systému nebo z proteinů, transportovaných tímto systémem do lyzozómů. Na MHCII se také mohou dostat organizmu vlastní peptidy, pocházející z fagocytovaných apoptotických tělísek nebo autofagozómů. [2]

Interakce[editovat | editovat zdroj]

Pro aktivaci T-lymfocytů je zásadní interakce MHCII s T-buněčným receptorem (TCR) a s jeho koreceptorem CD4 (pro MHCI je to CD8). TCR rozeznává MHC v místě navázaného peptidu. Pro úspěšnou aktivaci T-lymfocytu tak musí specificky rozeznat nejen MHC, ale i peptid exogenního původu, což je principem reakce na patogeny v organismu. CD4 se na MHCII váže bez ohledu na navázaný peptid a umožňuje, aby na MHCII reagovala jen ta podmnožina T-lymfocytů, která CD4 exprimuje, tedy pomocné T-lymfocyty (TH lymfocyty, CD4+ T-lymfocyty). Navíc je k aktivaci T-lymfocytu potřeba ještě kostimulace pomocí CD28, který exprimují pouze APC aktivované signálem nebezpečí, například pomocí Toll-like receptorů. Bez této kostimulace T-lymfocyt přechází do anergie nebo apoptózy.

Imunologická synapse[editovat | editovat zdroj]

Rozezná-li CD4+ T-lymfocyt pomocí svého antigenního receptoru (TCR) komplex MHCII s peptidem na povrchu APC, dojde k jejich vazbě a následnému vzniku molekulární struktury mezi APC a T-lymfocytem, která se nazývá imunologická synapse (IS). IS lze rozdělit centrální a periferní oblast, respektive cSMAC a pSMAC (supramolecullar activation cluster). Ústředními molekulami cSMAC jsou MHCII a TCR s koreceptorem CD4. Dále je zde molekula CD40 na APC straně IS a její ligand CD40L (= CD154) na T-lymfocytární straně. V cSMAC na T-lymfocyty se také nachází kostimulační molekula CD28, která interaguje s molekulou CD80 nebo CD86 na povrchu APC. Periferii IS (pSMAC) tvoří kruh adhezivních molekul ICAM a LFA-1, důležitých pro stabilitu IS. Součástí IS jsou také cytoplasmatické molekuly lokalizované pod membránou. Patří mezi ně proteiny účastnící se signalizace, vedoucí z receptorů v IS (např. protein kináza Cθ nebo Lck), a regulace cytoskeletu (v T-lymfocytu je do IS orientováno mikrotubuly organizující centrum – MTOC).[3][4]

IS může být strukturou různě stabilní (interakce trvá několik minut až hodin), což je ovlivněno mírou zralosti T-lymfocytu, druhem APC, množstvím antigenu prezentovaného na MHCII a komplexitou prostředí, kde se interakce odehrává. IS může být také do různé míry uspořádaná. Nejvyšší uspořádaností se vyznačuje stabilní monocentrická synapse s přesně vymezeným cSMAC a pSMAC. Od monocentrické IS je pak odvozena sekreční synapse, v jejímž středu se kromě cSMAC nachází další doména, kde probíhá exocytóza aktivních molekul, jako jsou cytokiny nebo granzymy a perforiny. Sekreční synapse je například mezi B-lymfocytem a pomocným T-lymfocytem, který sekretuje cytokiny přispívající k vývoji B-lymfocytu v plazmatickou buňku produkující protilátky. Mezi T lymfocytem a APC mohou dále vznikat méně uspořádané synapse, tzv. multicentrické IS, nebo synapse, kde rozdělení molekul do cSMAC a pSMAC chybí. [5]

Signalizace MHCII[editovat | editovat zdroj]

Kromě své klasické funkce prezentovat antigen T-lymfocytu slouží MHCII také jako receptor zprostředkovávající signalizaci vedoucí do APC, a ovlivňující tak její další osud. Stimulace MHCII na povrchu dendritických buněk je důležitá pro jejich zrání, produkci cytokinů a podporuje transport komplexů peptid-MHCII na povrch buňky.[6] U B-lymfocytů byla po stimulaci MHCII pozorována jejich proliferace, produkce protilátek a zvýšení adhezivity k T-lymfocytu a exprese kostimulačních molekul CD80 a CD86. Signalizace zprostředkovaná MHCII může tedy vést k proliferaci a diferenciaci APC. Po stimulaci MHCII může být ale také spuštěna apoptóza APC, a signalizace MHCII se tedy může podílet jak na zahájení, tak i na ukončení imunitní odpovědi.[6][7][8][9][10]

Mezi signalizační události po stimulaci MHCII patří: aktivace proteinových kináz z rodiny Src a Syk, protein kinázy C, MAP kináz Erk a p38, fosfatidylinositol-3 kinázy, fosfolipázy Cγ a mobilizace vápníku.[6] [5] Signalizace MHCII také vede k aktivaci transkripčních faktorů NFAT a AP-1.[11]

MHCII má jen velmi krátkou intracelulární část bez signalizačních motivů, a pro přenos signálu z MHCII do buňky je tedy nutná asociace s další signalizační molekulou. Mezi molekuly zprostředkovávající signalizaci MHCII patří CD19, CD20, MPYS a heterodimer Igα/Igβ (=CD79a/CD79b), jehož hlavní funkcí je zprostředkování signalizace BCR.[12][13][14][15] Signalizace MHCII je spouštěna především vazbou TCR při prezentaci antigenu. MHCII může být ale také stimulován vazbou superantigenu, molekuly LAG-3 (=CD223) nebo protilátky proti MHCII, čehož se využívá hlavně experimentálně.[6]

Onemocnění spojená s MHCII[editovat | editovat zdroj]

Porucha exprese MHCII způsobuje závažnou imunodeficienci, která se nazývá MHCII deficience nebo také syndrom holých lymfocytů. Nepřítomnost MHCII v imunitním systému vede k poruše vývoje CD4+ T-lymfocytů. V thymu totiž nemůže docházet k jejich pozitivní selekci rozeznáním komplexu peptid-MHCII na thymocytech prezentujících antigen a i když se malé množství CD4+ T-lymfocytů přesto vyvine, nemůže být následně aktivováno antigen prezentujícími buňkami, protože ani ty MHCII neexprimují. Deficit CD4+ T-lymfocytů následně vede k poruše tvorby protilátek, protože B-lymfocyty nedostávají od CD4+ T-lymfocytů pomocný signál. Deficience MHCII není způsobena mutací v genu pro MHCII glykoprotein samotný, ale mutacemi v genech pro jeho transkripční faktory, a to CIIT (MHC class II transactivator), RFXANK, RFX5 nebo RFXAP.

MHCII glykoproteiny hrají také důležitou roli při vzniku autoimunitních onemocnění, některé alely MHCII totiž zvyšují sklon k rozvoji těchto chorob.

Příklady alel lidského MHCII asociovaných s autoimunitními onemocněními
Onemocnění Alela
Goodpastureův syndrom HLA-DR2
Roztroušená skleróza HLA-DR2
Gravesova choroba HLA-DR3
Myasthenia gravis HLA-DR3
Systémový lupus erythematodes HLA-DR3
Diabetes mellitus typu I HLA-DR3/DR4
Revmatoidní artritida HLA-DR4
Pemphigus vulgaris HLA-DR4
Hashitomova tyroiditida HLA-DR5

[16][1]

Reference[editovat | editovat zdroj]

  1. a b Hořejší, V. and J. Bartůňková, Základy imunologie2009: Triton.
  2. Trombetta, E.S. and I. Mellman, CELL BIOLOGY OF ANTIGEN PROCESSING IN VITRO AND IN VIVO. Annual Review of Immunology, 2005. 23(1): p. 975-1028.
  3. Boisvert, J., S. Edmondson, and M.F. Krummel, Immunological Synapse Formation Licenses CD40-CD40L Accumulations at T-APC Contact Sites. The Journal of Immunology, 2004. 173(6): p. 3647-3652.
  4. Thauland, T.J. and D.C. Parker, Diversity in immunological synapse structure. Immunology, 2010. 131(4): p. 466-72.
  5. Friedl, P., A.T. den Boer, and M. Gunzer, Tuning immune responses: Diversity and adaptation of the immunological synapse. Nature Reviews Immunology, 2005. 5(7): p. 532-545.
  6. a b c d Al-Daccak, R., N. Mooney, and D. Charron, MHC class II signaling in antigen-presenting cells. Current Opinion in Immunology, 2004. 16(1): p. 108-113.
  7. Tabata, H., et al., Ligation of HLA-DR molecules on B cells induces enhanced expression of IgM heavy chain genes in association with SyK activation. Journal of Biological Chemistry, 2000. 275(45): p. 34998-35005.
  8. Mourad, W., R.S. Geha, and T. Chatila, ENGAGEMENT OF MAJOR HISTOCOMPATIBILITY COMPLEX CLASS-II MOLECULES INDUCES SUSTAINED, LYMPHOCYTE FUNCTION-ASSOCIATED MOLECULE-1-DEPENDENT CELL-ADHESION. Journal of Experimental Medicine, 1990. 172(5): p. 1513-1516.
  9. Nabavi, N., et al., Signalling through the MHC class II cytoplasmic domain is required for antigen presentation and induces B7 expression. Nature, 1992. 360(6401): p. 266-268.
  10. Nashar, T.O. and J.R. Drake, Dynamics of MHC class II-activating signals in murine resting B cells. Journal of Immunology, 2006. 176(2): p. 827-838.
  11. Haylett, R.S., N. Koch, and L. Rink, MHC class II molecules activate NFAT and the ERK group of MAPK through distinct signaling pathways in B cells. European Journal of Immunology, 2009. 39(7): p. 1947-1955.
  12. Bobbitt, K.R. and L.B. Justement, Regulation of MHC class II signal transduction by the B cell coreceptors CD19 and CD22. Journal of Immunology, 2000. 165(10): p. 5588-5596.
  13. Leveille, C., et al., MHC class II isotype-specific signaling complex on human B cells. European Journal of Immunology, 2002. 32(8): p. 2282-2291.
  14. Jin, L., et al., MPYS, a novel membrane tetraspanner, is associated with major histocompatibility complex class II and mediates transduction of apoptotic signals. Molecular and Cellular Biology, 2008. 28(16): p. 5014-5026.
  15. Jin, L., et al., MHC class II structural requirements for the association with Ig alpha/beta, and signaling of calcium mobilization and cell death. Immunology Letters, 2008. 116(2): p. 184-194.
  16. Murphy, K.M., P. Travers, and M. Walport, Janeway's Immunobiology2011: Garland Science.