Kyslík

Z Wikipedie, otevřené encyklopedie
Kyslík
  [He] 2s2 2p4
16 O
8
 
               
               
                                   
                                   
                                                               
                                                               
↓ Periodická tabulka ↓
Obecné
Název, značka, číslo Kyslík, O, 8
Cizojazyčné názvy lat. Oxygenium
Skupina, perioda, blok 16. skupina, 2. perioda, blok p
Chemická skupina Nekovy
Koncentrace v zemské kůře 480000 ppm
Koncentrace v mořské vodě 857 000 mg/l
Vzhled Bezbarvý plyn
Identifikace
Registrační číslo CAS
Atomové vlastnosti
Relativní atomová hmotnost 15,9994
Atomový poloměr 60 pm
Kovalentní poloměr 66 pm
Van der Waalsův poloměr 152 pm
Elektronová konfigurace [He] 2s2 2p4
Oxidační čísla −II, −I, +II
Elektronegativita (Paulingova stupnice) 3,44
Ionizační energie
První 1313,9 KJ/mol
Druhá 3388,3 KJ/mol
Třetí 5300,5 KJ/mol
Látkové vlastnosti
Krystalografická soustava Krychlová
Molární objem 17,36×10−6 m3/mol
Mechanické vlastnosti
Hustota 1,429 kg/m3
Skupenství Plynné
Tlak syté páry 1000 Pa při 61K
Rychlost zvuku 330 m/s
Termické vlastnosti
Tepelná vodivost 0,02658 W⋅m−1⋅K−1
Termodynamické vlastnosti
Teplota tání −218,79 °C (54,36 K)
Teplota varu −182,95 °C (90,2 K)
Skupenské teplo tání 0,444 kJ/mol
Skupenské teplo varu 6,82 kJ/mol
Měrná tepelná kapacita 29,378 Jmol−1K−1
Elektromagnetické vlastnosti
Standardní elektrodový potenciál 1,23 V
Magnetické chování Paramagnetický
Bezpečnost
Oxidující
Oxidující (O)
R-věty R8
S-věty S2, S17
Izotopy
I V (%) S T1/2 Z E (MeV) P
16O 99,76% je stabilní s 8 neutrony
17O 0,039% je stabilní s 9 neutrony
18O 0,201% je stabilní s 10 neutrony
Není-li uvedeno jinak, jsou použity
jednotky SI a STP (25 °C, 100 kPa).
Dusík O Fluor

S

Kyslík (chemická značka O, latinsky Oxygenium) je plynný chemický prvek, tvořící druhou hlavní složku zemské atmosféry. Je biogenním prvkem a jeho přítomnost je nezbytná pro existenci většiny živých organismů na této planetě. Autorem jeho českého názvu je Jan Svatopluk Presl.[1] Při dýchání vzduchu o obsahu kyslíku větším než 75 % (za normálního atmosférického tlaku) však dochází k většinou nenávratnému poškození plic.

Alotropie kyslíku

Podrobnější informace naleznete v článku Alotropické modifikace kyslíku.

Kyslík vytváří řadu alotropických modifikací:

Historie výzkumu kyslíku

Základní fyzikálně-chemické vlastnosti

Kyslík je velmi reaktivní permanentní plyn, nezbytný pro existenci života na naší planetě. Slučování kyslíku s ostatními prvky se nazývá hoření, pokud je látka zahřátá na zápalnou teplotu. Jde prakticky vždy o exotermní reakci, která vede k uvolnění značného množství tepelné energie. Produkty hoření se nazývají oxidy (dříve kysličníky).

Výskyt v přírodě

Na Zemi je kyslík velmi rozšířeným prvkem.

  • atmosféře tvoří plynný kyslík 21 objemových procent.
  • Voda oceánů, které pokrývají 2/3 zemského povrchu, je hmotnostně z 90 % složena z kyslíku.
  • zemské kůře je kyslík majoritním prvkem, je přítomen téměř ve všech horninách. Jeho obsah je odhadován na 46 až 50 hmotnostních procent. V hlubších vrstvách zemského tělesa zastoupení kyslíku klesá a předpokládá se, že v zemském jádře je přítomen pouze ve stopách.

Ve vesmíru je zastoupení kyslíku podstatně nižší. Na 1 000 atomů vodíku zde připadá pouze jeden atom kyslíku.

Anorganické sloučeniny

Ve svých sloučeninách se kyslík vyskytuje převážně v mocenství O−II, výjimečně pak jako O−I a O+Ia také O 
2
  v superoxidech (KO2 superoxid draselný) a O 
3
 ozonidech.

Záporně dvojmocný kyslík je přítomen ve velmi široké škále sloučenin. Především jsou to oxidy, vlastnosti jednotlivých sloučenin jsou detailněji popsány v kapitolách příslušných jednotlivým prvkům.

Kyslík je přítomen ve většině anorganických kyselin a jejich solí. Z těch nejdůležitějších je možno jmenovat uhličitany (CO3)−II, křemičitany (SiO3)−II, sírany (SO4)−II, dusičnany (NO3) a fosforečnany (PO4)−III.

Alkalické sloučeny hydroxidy se vyznačují přítomnosti skupiny -OH. Mezi nejznámější patří hydroxid sodný NaOH, draselný KOH a vápenatý, hašené vápno Ca(OH)2.

Ve valenci O−I vystupuje kyslík v peroxidech, nejznámější z nich je peroxid vodíku H2O2. Tato kapalná sloučenina má silné oxidační účinky a v praxi se používá ve formě svých vodných roztoků v medicíně pro dezinfekci a v chemii jako oxidační činidlo. Peroxid sodný Na2O2 je pevná, hygroskopická látka, která nachází uplatnění jako velmi energetické oxidační činidlo.

Pouze fluor vykazuje větší elektronegativitu než kyslík a tvoří s ním několik fluoridů, v nichž se kyslík vyskytuje v mocenství O+I i O+II. Všechny fluoridy kyslíku jsou značně nestálé, přesto však existuje reálná možnost jejich využití jako raketového paliva.

Organické sloučeniny

Kyslík se vyskytuje ve velkém množství organických látek. Řada těchto sloučenin je součástí všech živých organismů, protože kyslík patří mezi základní biogenní prvky. Základní skupiny organických sloučenin s obsahem kyslíku jsou:

Využití atmosférického kyslíku

Jedná se o neviditelnou složku vzduchu nutnou pro spalování prakticky každého fosilního paliva (technologická oxidace fosilních paliv)

Nežádoucí chemicko-technologický či fyzikálně-chemický proces, koroze kovů je způsobená nežádoucí oxidací kovů a dalšími doprovodnými chemickými reakcemi.

Výroba a využití

Kyslík se prakticky výlučně vyrábí destilací zkapalněného vzduchu. Vyrobený kyslík se uchovává buď ve zkapalněném stavu ve speciálních Dewarových nádobách (viz obrázek) nebo plynný v ocelových tlakových lahvích. Vzhledem k vysoké reaktivitě čistého kyslíku je nezbytné, aby se nedostal do přímého kontaktu s organickými látkami. Proto se žádné součásti aparatury pro uchovávání a manipulaci s kapalným nebo stlačeným kyslíkem nesmí mazat organickými tuky nebo oleji.

  • Kyslíkové koncentrátory jsou přístroje, které nepotřebují žádnou zásobu kyslíku v podobě lahví, ale umožňují vyvíjení vyšší koncentrace neomezeně, nebo dle nastavení.
  • V medicíně se čistý kyslík používá při operacích a traumatických stavech pro podporu pacientova dýchání a lepšímu okysličení organismu. Směsi kyslíku s inertními plyny slouží potápěčům k potlačení dekompresní nemoci. Je součástí i všech ostatních dýchacích plynů, které se používají pro potápění do velkých hloubek.
  • Také vysokohorští horolezci a letci se v nutných případech uchylují k dýchání čistého kyslíku. I piloti stíhacích letadel jsou vybaveni směsmi stlačených plynů, jejichž základní složkou je kyslík. To proto, že zvýšením koncentrace kyslíku se zvýší jeho parciální tlak a ulehčí se tak dýchání v řídké atmosféře a předejde vysokohorské nemoci.
  • Američtí astronauti programu Apollo dýchali také atmosféru z téměř čistého kyslíku, což umožnilo snížit tlak v kabině zhruba na třetinu běžné hodnoty a tak odlehčit její hermetickou konstrukci. To se ale stalo osudným posádce Apolla 1, která ve vysoce hořlavé atmosféře uhořela. Všechny skafandry pro výstup do kosmu používají kyslíkovou atmosféru kvůli co nejnižšímu přetlaku, protože přetlak omezuje pohyblivost skafandru.
  • Při hoření směsi kyslíku s acetylenem lze dosáhnout teploty cca 3 150–3 200 °C. Proto se kyslíko-acetylenový plamen využívá k řezání oceli a tavení kovů s vysokým bodem tání, například platinových kovů.
  • Při výrobě oceli je nutné především odstranit z matrice železa přebytečný uhlík, který je ve formě karbidu železa. Tento přebytečný uhlík spolu s dalšími příměsmi se odstraňuje spálením obvykle v tzv. konvertoru, a to vháněním vzduchu v Bessemerově a Thomasově konvertoru nebo vháněním čistého kyslíku do roztaveného železa v kyslíkovém konvertoru), kde za vysoké teploty taveniny dochází k oxidaci přítomného uhlíku na plynné oxidy, které odcházejí jako spaliny.
  • Kapalný kyslík většinou slouží jako okysličovadlo raketových motorů při letech kosmických lodí.
  • Kyslík se používá jako jedna ze složek pro náplň některých typů palivových článků.

Reference

  1. http://www.rozhlas.cz/regina/slova/_zprava/dasik-vonik-ytrik-a-platik--161586
  2. Greenwood, N. N. – Earnshaw, A.: Chemie prvků. 1993.

Literatura

  • Cotton F.A., Wilkinson J.: Anorganická chemie, souborné zpracování pro pokročilé, ACADEMIA, Praha 1973
  • Holzbecher Z.: Analytická chemie, SNTL, Praha 1974
  • Dr. Heinrich Remy, Anorganická chemie 1. díl, 1. vydání 1961
  • N. N. Greenwood – A. Earnshaw, Chemie prvků 1. díl, 1. vydání 1993 ISBN 80-85427-38-9

Externí odkazy