Kramersovy-Kronigovy relace

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání

Kramersovy–Kronigovy relace umožňují spočítat reálnou část odezvy lineárního pasivního systému, známe-li imaginární části odezvy při všech frekvencích (nebo naopak určit imaginární část ze znalosti části reálné). Při analýze optických konstant hrají důležitou roli a jsou hojně využívány, protože platí např. pro elektrickou vodivost σ (vystupující v ohmově zákoně j(ω)=σ(ω)E(ω). Abychom mohli Kramers–Kronigovu analýzu provést, musí funkce odezvy α(ω)=α1(ω)+iα2(ω) splňovat:

  1. Póly α(ω) jsou všechny pod reálnou osou
  2. Při integraci přes nekonečně velkou polokružnici v horní polorovině komplexní roviny, je integrál z α(ω)/ω roven nule
  3. Pro \omega\in\mathbb{R} je α1(ω) sudá a α2(ω) lichá

Potom platí:

\alpha_1(\omega) = {2 \over \pi} \mathcal{P}\!\!\! \int \limits_{0}^{\infty} {s \alpha_2(s) \over s^2 - \omega^2}\,\mathrm{d}s.

a

\alpha_2(\omega) = -{2 \over \pi} \mathcal{P}\!\!\! \int \limits_{0}^{\infty} {\omega \alpha_1(s) \over s^2 - \omega^2}\,\mathrm{d}s = -{2 \omega \over \pi} \mathcal{P}\!\!\! \int \limits_{0}^{\infty} {\alpha_1(s) \over s^2 - \omega^2}\, \mathrm{d}s.

\mathcal{P} značí hlavní hodnotu integrálu.