Jednotková matice

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání

V lineární algebře označuje pojem jednotková matice velikosti n čtvercovou matici n \times n, která má na hlavní diagonále jedničky a nuly na ostatních místech. Jednotková matice se značí In, případně jen I, je-li velikost nepodstatná nebo ji lze odvodit z kontextu


I_1 = \begin{bmatrix}
1 \end{bmatrix}
,\ 
I_2 = \begin{bmatrix}
1 & 0 \\
0 & 1 \end{bmatrix}
,\ 
I_3 = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \end{bmatrix}
,\ \cdots ,\ 
I_n = \begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 \end{bmatrix}

Důležitou vlastností In je

AIn = A   a   InB = B

je-li násobení matic definováno.

Jednotková matice je inverzní sama k sobě, zároveň je symetrická i ortogonální. Nemění se mocněním. Její odmocnina (A, pro které  A*A=I_n ) není jednoznačná (Může to být opět jednotková, ale může to být i matice nesymetrická, už vůbec ne diagonální).

Jednotková matice je speciálním případem diagonální matice.