Genová vazebná skupina

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání

Genová vazebná skupina je skupina genů nacházející se na jednom chromozómu. Pro tuto skupinu genů neplatí Třetí Mendelův zákon (Zákon o volné kombinovatelnosti vloh).

Genetici říkají, že mezi těmito geny existuje vazba. Rozlišujeme vazbu úplnou, kdy u dané skupiny genů nedochází ke crossing-overu (celá skupina genů se pak při křížení jedinců chová jako jeden jediný gen), nebo k němu dochází a v tom případě se vazba projeví tím, že rodičovské kombinace alel se v populaci potomků objevují častěji, než by odpovídalo předpokladům Zákona o volné kombinovatelnosti vloh.

Sílu vazby je možno vyjádřit Morganovým, nebo Batesovým číslem.

Morganovo číslo[editovat | editovat zdroj]

Morganovo číslo (p), pojmenované po Thomasi Morganovi, objeviteli Morganových zákonů dědičnosti, získáme tak, že počet rekombinovaných potomků vydělíme počtem všech potomků. Udává se v morganech, nebo (po vynásobení stem) v centimorganech a určuje sílu vazby. Zároveň slouží orientačně k odhadům vzdálenosti mezi geny na chromozomu a k určení pořadí, v jakém se na chromozomu nacházejí - tzv. tvorba Chromozómových map. Neexistuje však žádný způsob, jak převést centimorgany na nějakou reálnou vzdálenost, neboť se vztahují k četnosti crossing-overů mezi geny a ty závisí i na spoustě dalších okolností. Hodnoty Morganova čísla se pohybují v intervalu 0-50 cM.

Batesonovo číslo[editovat | editovat zdroj]

Batesonovo číslo (c), pojmenované po Williamu Batesonovi, získáme, když počet nerekombinovaných potomků vydělíme počtem rekombinovaných potomků. Říká nám, kolikrát častěji vznikají nerekombinovaní jedinci, než rekombinovaní. Vynásobíme-li známým Batesonovým číslem teoretický štěpný poměr vyplývající z Mendelova Zákona o volné kombinovatelnosti vloh, získáme teoretický štěpný poměr, který máme očekávat u dané skupiny vloh. Batesonovo číslo nám tedy říká, jak existence vazby deformuje štěpný poměr platný pro nevázané geny.

Mezi Morganovým a Batesonovým číslem platí následující vztahy:

p = 100 / (c+1)

c = 1-p / p (respektive c = 100-p / p, pokud p udáváme v centimorganech)