Galileovy transformace

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání
Nákres vzájemné polohy vztažných soustav S a S'.

Galileovy transformace jsou transformační rovnice umožňující pomocí souřadnic x, y, z, t nějaké události U v inerciální vztažné soustavě S vyjádřit souřadnice x' , y' , z' , t' téže události v jiné inerciální vztažné soustavě S' , která se vzhledem k původní soustavě S pohybuje konstantní rychlostí v.

Matematické vyjádření[editovat | editovat zdroj]

Pro pohyb ve směru rovnoběžném s osou x platí:

\begin{align}t'&=t \\
x'&=x-vt \\
y'&=y \\
z'&=z \end{align}

Pro čas platí t=0 ve chvíli, kdy počátky inerciálních vztažných soustav splývají. Tato transformace tedy považuje čas za neměnný a mění pouze prostorové souřadnice.

Inverzní transformace[editovat | editovat zdroj]

K vyjádření události v soustavě S' prostřednictvím souřadného systému soustavy S můžeme použít tzv. inverzní Galileiho transformaci.

\begin{align}t &=t' \\
x&=x'+vt \\
y&=y' \\
z&=z' \end{align}

Transformace rychlosti[editovat | editovat zdroj]

Předpokládejme, že v soustavě S se pohybuje hmotný bod rychlostí \mathbf{v}, jejíž složky jsou v_x=\frac{\mathrm{d}x}{\mathrm{d}t}, v_y=\frac{\mathrm{d}y}{\mathrm{d}t} a v_z=\frac{\mathrm{d}z}{\mathrm{d}t}. Složky rychlosti \mathbf{v} soustavě S' získáme derivací vztahů pro Galileiho transformaci, tzn.

v_x^\prime = \frac{\mathrm{d}x^\prime}{\mathrm{d}t} = v_x - v
v_y^\prime = \frac{\mathrm{d}y^\prime}{\mathrm{d}t} = v_y
v_z^\prime = \frac{\mathrm{d}z^\prime}{\mathrm{d}t} = v_z

To odpovídá vztahu pro skládání rychlostí z klasické mechaniky.

Vlastnosti[editovat | editovat zdroj]

Galileiho transformace sice odpovídá našim zkušenostem, narušuje však postuláty (speciální) teorie relativity. Ukazuje se např., že vztahy popisující elektrické a magnetické jevy mají při použití Galileiho transformace v obou soustavách zcela rozdílné tvary, což odporuje prvnímu postulátu. I druhý postulát je porušen, neboť dostaneme-li při měření rychlosti světla podél osy x v soustavě S hodnotu c, bude podle výrazu pro transformaci rychlosti v soustavě S' rychlost světla c^\prime = c-v\ne c.

Galileiho transformace je přijatelná pouze pro malé rychlosti ve srovnání s rychlostí světla, tzn. v\ll c. Pro velké rychlosti je však nutno použít Lorentzovu transformaci. Platnost Galileiho transformace se tedy omezuje na klasickou mechaniku, zatímco v teorii relativity se používá Lorentzova transformace.

Galileiho transformace však svůj význam neztratila, neboť člověk se ve svém okolí běžně setkává spíše s rychlostmi malými, a pro běžnou potřebu (např. technické praxe) je Galileiho transformace postačující.

Související články[editovat | editovat zdroj]

Literatura[editovat | editovat zdroj]

  • Galileo 1638 Discorsi e Dimostrazioni Matematiche, intorno á due nuoue scienze 191 - 196, vydavatel Lowys Elzevir (Louis Elsevier), Leiden