Železné jádro

Z Wikipedie, otevřené encyklopedie
Skočit na: Navigace, Hledání
Jádro trafa složené z plechů
Jádro trafa skládané, s vyznačením vzduchové mezery
Polovina feritového jádra tvaru EE

Železné jádro je v elektrotechnice konstrukce z magneticky měkkých feromagnetických materiálů, kterou je možno snadno přemagnetovat. Hlavním úkolem jádra (ve spojení s cívkami protékanými proudem) je koncentrovat a vést magnetický tok, zvětšovat indukčnost cívky a magnetickou indukci. Pro stejnosměrné aplikace může být jádro vyrobeno z plného - masivního materiálu (litiny). Pro střídavé magnetické obvody (průmyslového kmitočtu) jsou jádra sestavena ze vzájemně izolovaných transformátorových plechů s úzkou hysterezní smyčkou a s co nejvyšším ohmickým odporem materiálu. Pro vysokofrekvenční obvody jsou jádra zhotovena lisováním z feritového prášku. Důvodem je omezení ztrát vířivýni proudy v jádru.

Fyzikální základy[editovat | editovat zdroj]

Elektrický proud procházejí vodičem vytváří kolem vodiče magnetický tok - magnetické pole. Vytvoříme-li z vodiče cívku, dojde ke koncentraci magnetického toku jednotlivých vodičů - závitů. Zesílení magnetického pole dosahuje u vhodných látek až 10 000 násobku. Jádro transformátoru určuje vazbu mezi vinutími.

Pouze feromagnetické látky obsahují v molekule, při teplotách nižšších než Curieho teplota, molekulární magnety (Curieho teplota železa je 768 stupňů Celsia).

Feromagnetické jádro cívky (železo, nikl, kobalt) má oproti okolí (vzduch) větší magnetickou vodivost (permeabilitu) a tím určuje a koncentruje magnetický tok a většině magnetického toku určuje směr a cestu kudy má protékat. Zbývající část toku se uzavírá rozptylovými cestami. Rozptylový magnetický je poměrně malý, pokud hodnoty magnetická indukce nepřekročí za bod ohybu hystrerezní křivky. V této části má hystrerezní křivka lineární průběh. Rozptylový magnetický tok velmi značně naroste, pokud magnetická indukce překročí bod ohybu hystrerezní křivky. Při vysokých hodnotách magnetické indukce se další narůstající tok uzavírá jen rozptylovými cestami. Tento stav je označován jako stav nasycení permeabilita se redukuje na permeabilitu vakua.

Minimálního rozptylového toku u jader je dosahováno u prstencového tvaru jádra označované jako toroidní jádro.

Konstrukce železných jader[editovat | editovat zdroj]

Při konstrukci železných jader je třeba zvážit různé magnetické veličiny:

V závislosti na předpokládaném použití se feromagnetická jádra vyrábějí z různých materiálů. Zde je důležité volit takový materiál, aby docházelo k co nejmenším ztrátám v železe a miinimálního rozptylu. Vlastnosti materiálu je možné vyčíst z hysterezní křivky. Aby bylo působení jádra optimalizováno, zhotovuje se vinutí cívek tak, aby vazba mezi cívkami byla těsná (cívky se vinou na sebe) a současně aby zůstal co nejmenší volný prostor mezi jádrem a kostrou cívky. V některých případech požadujeme volnou vazbu, například u svařovacího transformátoru, kde primární a část sekundárního vinutí jsou uloženy na protilehlé straně jádra.

Jádra pro cívky se stejnosměrným proudem[editovat | editovat zdroj]

Protože při průtoku stejnosměrného proudu nevznikají vířivé proudy, mohou být feromagnetická jádra zhotovena z masivního železa. Tato masivní jádra mohou být zhotovena například z litiny nebo oceli. Přesto jsou v některých případech tato jádra zhotovována z plechů. U stejnosměrných (komutátorových) motorů může být magnetický obvod statoru (buzení) zhotoven z plného materiálu. Kotva (rortor) musí být vždy sestavena z transformátorých plechů. U malých stejnosměrných motorů bývají jako póly často použity permanentní magnety.

Jádra pro cívky s nízkofrekvenčním střídavým proudem[editovat | editovat zdroj]

Ztráty vířivými proudy rostou kvadraticky s frekvencí. Vlivem vířivých proudů se v jádru vyvíjí tepelná energie a jádro se zahřívá a snižuje množství energie přenesené magnetickým tokem. U masivních jader magnetovaných střídavým proudem je všechna přenášená energi zmařena v jádru, které se silně zahřívá. To je důvod, proč se jádra pro snížení ztrát zhotovují z tenkých a vzájemně izolovaných plechů. Z těchto plechů se podle požadovaného využití vystřihují potřebné tvary (M - EI - UI), nebo se z pásků navíjejí uzavřená jádra (toroid - Unicore - C-jádro).

Jádra pro cívky s vysokofrekvenčním střídavým proudem[editovat | editovat zdroj]

Pro použití ve vysokofrekvenční oblasti se jádra lisují ze směsi železného prachu a izolační spékací hmoty. Jde o takzvané ferity. Ferity se chovají stejně jako ostatní feromagnetické materiály, ale díky použitému výrobnímu procesu (sintrování) mají velmi nízkou elektrickou vodivost. Díky nízké elektrické vodivosti v nich při vysokých frekvencích vznikají zanedbatelné ztráty vířivými proudy.

Příklady použití feromagnetických jader[editovat | editovat zdroj]

Literatura[editovat | editovat zdroj]

V tomto článku byl použit překlad textu z článku Eisenkern na německé Wikipedii.